Spaces:
Sleeping
Sleeping
File size: 7,900 Bytes
dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 804a7ea dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 b04e992 0b10d8a dbce286 0b10d8a 6400d6d b04e992 0b10d8a dbce286 804a7ea 0b10d8a dbce286 b04e992 0b10d8a b04e992 dbce286 0b10d8a b04e992 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 0b10d8a dbce286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
from fastapi import FastAPI, HTTPException
import os
from typing import List, Dict
from dotenv import load_dotenv
import logging
from pathlib import Path
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant as QdrantVectorStore
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.models import PointIdsList
from langgraph.graph import MessagesState, StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GOOGLE_API_KEY or not GROQ_API_KEY:
raise ValueError("API keys not set in environment variables")
app = FastAPI()
class QASystem:
def __init__(self):
self.vector_store = None
self.graph = None
self.memory = MemorySaver() # LangGraph memory saver for conversation history
self.embeddings = None
self.client = None
self.pdf_dir = "pdfss"
def load_pdf_documents(self):
documents = []
pdf_dir = Path(self.pdf_dir)
if not pdf_dir.exists():
raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}")
for pdf_path in pdf_dir.glob("*.pdf"):
try:
loader = PyPDFLoader(str(pdf_path))
documents.extend(loader.load())
logger.info(f"Loaded PDF: {pdf_path}")
except Exception as e:
logger.error(f"Error loading PDF {pdf_path}: {str(e)}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = text_splitter.split_documents(documents)
logger.info(f"Split documents into {len(split_docs)} chunks")
return split_docs
def initialize_system(self):
try:
# Qdrant setup
self.client = QdrantClient(":memory:")
try:
self.client.get_collection("pdf_data")
except Exception:
self.client.create_collection(
collection_name="pdf_data",
vectors_config=VectorParams(size=768, distance=Distance.COSINE),
)
logger.info("Created new collection: pdf_data")
# Embeddings and vector store
self.embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001", google_api_key=GOOGLE_API_KEY
)
self.vector_store = QdrantVectorStore(
client=self.client,
collection_name="pdf_data",
embeddings=self.embeddings,
)
# Load and add documents
documents = self.load_pdf_documents()
if documents:
points = self.client.scroll(collection_name="pdf_data", limit=100)[0]
if points:
self.client.delete(
collection_name="pdf_data",
points_selector=PointIdsList(points=[p.id for p in points])
)
self.vector_store.add_documents(documents)
logger.info(f"Added {len(documents)} documents to vector store")
# LLM setup
llm = ChatGroq(
model="llama3-8b-8192",
api_key=GROQ_API_KEY,
temperature=0.7
)
# Graph building
graph_builder = StateGraph(MessagesState)
# === TOOL NODE for context fetching from Qdrant ===
def retrieve_documents(state: MessagesState):
query = [m.content for m in state["messages"] if m.type == "human"][-1]
results = self.vector_store.similarity_search(query, k=4)
context = "\n\n".join([doc.page_content for doc in results])
return {"messages": [SystemMessage(content=context, name="retrieval")]} # as tool message
# === GENERATOR NODE that uses full memory (chat history) ===
def generate_response(state: MessagesState):
# Get full history from memory
thread_id = state["configurable"].get("thread_id", "default")
history = self.memory.get_memory(thread_id).get("messages", [])
logger.info(f"[Thread {thread_id}] History: {[m.content for m in history]}")
# Add current turn messages
all_messages = history + state["messages"]
# Extract context from retrieved docs (tool messages)
retrieved_docs = [m for m in all_messages if m.type == "tool"]
context = ' '.join(m.content for m in retrieved_docs) if retrieved_docs else "mountain bicycle documentation knowledge"
# Compose system prompt
system_prompt = (
"You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles. "
"Your responses MUST be accurate, concise (5 sentences max). "
"If you don't know the answer, say 'I don't know based on available data.'\n\n"
f"Context:\n{context}"
)
final_messages = [SystemMessage(content=system_prompt)] + all_messages
response = llm.invoke(final_messages)
# Save updated chat to memory
self.memory.save_checkpoint(thread_id, {"messages": all_messages + [response]})
return {"messages": [response]}
# Add graph nodes
graph_builder.add_node("retrieval", retrieve_documents)
graph_builder.add_node("generate", generate_response)
# Graph edges
graph_builder.set_entry_point("retrieval")
graph_builder.add_edge("retrieval", "generate")
graph_builder.add_edge("generate", END)
# Compile graph with memory
self.graph = graph_builder.compile(checkpointer=self.memory)
return True
except Exception as e:
logger.error(f"System initialization error: {str(e)}")
return False
# === Query Processor with Memory ===
def process_query(self, query: str, user_id: str) -> List[Dict[str, str]]:
try:
responses = []
for step in self.graph.stream(
{"messages": [HumanMessage(content=query)]},
stream_mode="values",
config={"configurable": {"thread_id": user_id}} # thread ID for user memory
):
if step["messages"]:
responses.append({
'content': step["messages"][-1].content,
'type': step["messages"][-1].type
})
return responses
except Exception as e:
logger.error(f"Query processing error: {str(e)}")
return [{'content': f"Query processing error: {str(e)}", 'type': 'error'}]
# === Initialize QA System ===
qa_system = QASystem()
if qa_system.initialize_system():
logger.info("QA System Initialized Successfully")
else:
raise RuntimeError("Failed to initialize QA System")
# === FastAPI Route ===
@app.post("/query")
async def query_api(query: str, user_id: str): # Pass user_id for session-specific memory
responses = qa_system.process_query(query, user_id)
return {"responses": responses}
|