File size: 6,324 Bytes
42f4126
 
aea4015
42f4126
 
 
aea4015
 
 
04fa68c
aea4015
 
 
 
 
 
 
89817e2
42f4126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea4015
42f4126
 
 
 
 
 
 
 
aea4015
 
 
 
42f4126
 
 
 
aea4015
42f4126
 
 
 
 
 
aea4015
42f4126
 
 
 
 
 
 
 
 
 
 
 
 
 
070daeb
42f4126
 
 
 
 
 
 
 
 
 
aea4015
 
 
 
 
 
42f4126
aea4015
 
42f4126
aea4015
 
 
 
 
 
42f4126
aea4015
42f4126
aea4015
 
 
 
 
 
42f4126
aea4015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f4126
 
 
 
aea4015
42f4126
 
aea4015
42f4126
 
 
 
 
 
 
 
 
 
 
 
 
 
aea4015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f4126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea4015
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import re
import threading

import gradio as gr
import spaces
import transformers
from transformers import pipeline

# λͺ¨λΈκ³Ό ν† ν¬λ‚˜μ΄μ € λ‘œλ”©
model_name = "CohereForAI/c4ai-command-r7b-arabic-02-2025"
if gr.NO_RELOAD:
    pipe = pipeline(
        "text-generation",
        model=model_name,
        device_map="auto",
        torch_dtype="auto",
    )

# μ΅œμ’… 닡변을 κ°μ§€ν•˜κΈ° μœ„ν•œ 마컀
ANSWER_MARKER = "**λ‹΅λ³€**"

# 단계별 좔둠을 μ‹œμž‘ν•˜λŠ” λ¬Έμž₯λ“€
rethink_prepends = [
    "자, 이제 λ‹€μŒμ„ νŒŒμ•…ν•΄μ•Ό ν•©λ‹ˆλ‹€ ",
    "제 μƒκ°μ—λŠ” ",
    "μž μ‹œλ§Œμš”, 제 μƒκ°μ—λŠ” ",
    "λ‹€μŒ 사항이 λ§žλŠ”μ§€ 확인해 λ³΄κ² μŠ΅λ‹ˆλ‹€ ",
    "λ˜ν•œ κΈ°μ–΅ν•΄μ•Ό ν•  것은 ",
    "또 λ‹€λ₯Έ μ£Όλͺ©ν•  점은 ",
    "그리고 μ €λŠ” λ‹€μŒκ³Ό 같은 사싀도 κΈ°μ–΅ν•©λ‹ˆλ‹€ ",
    "이제 μΆ©λΆ„νžˆ μ΄ν•΄ν–ˆλ‹€κ³  μƒκ°ν•©λ‹ˆλ‹€ ",
    "μ§€κΈˆκΉŒμ§€μ˜ 정보λ₯Ό λ°”νƒ•μœΌλ‘œ, μ›λž˜ μ§ˆλ¬Έμ— μ‚¬μš©λœ μ–Έμ–΄λ‘œ λ‹΅λ³€ν•˜κ² μŠ΅λ‹ˆλ‹€:"
    "\n{question}\n"
    f"\n{ANSWER_MARKER}\n",
]


# μˆ˜μ‹ ν‘œμ‹œ 문제 해결을 μœ„ν•œ μ„€μ •
latex_delimiters = [
    {"left": "$$", "right": "$$", "display": True},
    {"left": "$", "right": "$", "display": False},
]


def reformat_math(text):
    """Gradio ꡬ문(Katex)을 μ‚¬μš©ν•˜λ„λ‘ MathJax ꡬ뢄 기호 μˆ˜μ •.
    이것은 Gradioμ—μ„œ μˆ˜ν•™ 곡식을 ν‘œμ‹œν•˜κΈ° μœ„ν•œ μž„μ‹œ ν•΄κ²°μ±…μž…λ‹ˆλ‹€. ν˜„μž¬λ‘œμ„œλŠ”
    λ‹€λ₯Έ latex_delimitersλ₯Ό μ‚¬μš©ν•˜μ—¬ μ˜ˆμƒλŒ€λ‘œ μž‘λ™ν•˜κ²Œ ν•˜λŠ” 방법을 μ°Ύμ§€ λͺ»ν–ˆμŠ΅λ‹ˆλ‹€...
    """
    text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
    text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
    return text


def user_input(message, history: list):
    """μ‚¬μš©μž μž…λ ₯을 νžˆμŠ€ν† λ¦¬μ— μΆ”κ°€ν•˜κ³  μž…λ ₯ ν…μŠ€νŠΈ μƒμž λΉ„μš°κΈ°"""
    return "", history + [
        gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
    ]


def rebuild_messages(history: list):
    """쀑간 생각 κ³Όμ • 없이 λͺ¨λΈμ΄ μ‚¬μš©ν•  νžˆμŠ€ν† λ¦¬μ—μ„œ λ©”μ‹œμ§€ μž¬κ΅¬μ„±"""
    messages = []
    for h in history:
        if isinstance(h, dict) and not h.get("metadata", {}).get("title", False):
            messages.append(h)
        elif (
            isinstance(h, gr.ChatMessage)
            and h.metadata.get("title")
            and isinstance(h.content, str)
        ):
            messages.append({"role": h.role, "content": h.content})
    return messages


@spaces.GPU
def bot(
    history: list,
    max_num_tokens: int,
    final_num_tokens: int,
    do_sample: bool,
    temperature: float,
):
    """λͺ¨λΈμ΄ μ§ˆλ¬Έμ— λ‹΅λ³€ν•˜λ„λ‘ ν•˜κΈ°"""

    # λ‚˜μ€‘μ— μŠ€λ ˆλ“œμ—μ„œ 토큰을 슀트림으둜 κ°€μ Έμ˜€κΈ° μœ„ν•¨
    streamer = transformers.TextIteratorStreamer(
        pipe.tokenizer,  # pyright: ignore
        skip_special_tokens=True,
        skip_prompt=True,
    )

    # ν•„μš”ν•œ 경우 좔둠에 μ§ˆλ¬Έμ„ λ‹€μ‹œ μ‚½μž…ν•˜κΈ° μœ„ν•¨
    question = history[-1]["content"]

    # 보쑰자 λ©”μ‹œμ§€ μ€€λΉ„
    history.append(
        gr.ChatMessage(
            role="assistant",
            content=str(""),
            metadata={"title": "🧠 생각 쀑...", "status": "pending"},
        )
    )

    # ν˜„μž¬ μ±„νŒ…μ— ν‘œμ‹œλ  μΆ”λ‘  κ³Όμ •
    messages = rebuild_messages(history)
    for i, prepend in enumerate(rethink_prepends):
        if i > 0:
            messages[-1]["content"] += "\n\n"
        messages[-1]["content"] += prepend.format(question=question)

        num_tokens = int(
            max_num_tokens if ANSWER_MARKER not in prepend else final_num_tokens
        )
        t = threading.Thread(
            target=pipe,
            args=(messages,),
            kwargs=dict(
                max_new_tokens=num_tokens,
                streamer=streamer,
                do_sample=do_sample,
                temperature=temperature,
            ),
        )
        t.start()

        # μƒˆ λ‚΄μš©μœΌλ‘œ νžˆμŠ€ν† λ¦¬ μž¬κ΅¬μ„±
        history[-1].content += prepend.format(question=question)
        if ANSWER_MARKER in prepend:
            history[-1].metadata = {"title": "πŸ’­ 사고 κ³Όμ •", "status": "done"}
            # 생각 μ’…λ£Œ, 이제 λ‹΅λ³€μž…λ‹ˆλ‹€ (쀑간 단계에 λŒ€ν•œ 메타데이터 μ—†μŒ)
            history.append(gr.ChatMessage(role="assistant", content=""))
        for token in streamer:
            history[-1].content += token
            history[-1].content = reformat_math(history[-1].content)
            yield history
        t.join()

    yield history


with gr.Blocks(fill_height=True, title="λͺ¨λ“  LLM λͺ¨λΈμ— μΆ”λ‘  λŠ₯λ ₯ λΆ€μ—¬ν•˜κΈ°") as demo:
    with gr.Row(scale=1):
        with gr.Column(scale=5):

            chatbot = gr.Chatbot(
                scale=1,
                type="messages",
                latex_delimiters=latex_delimiters,
            )
            msg = gr.Textbox(
                submit_btn=True,
                label="",
                show_label=False,
                placeholder="여기에 μ§ˆλ¬Έμ„ μž…λ ₯ν•˜μ„Έμš”.",
                autofocus=True,
            )
        with gr.Column(scale=1):
            gr.Markdown("""## λ§€κ°œλ³€μˆ˜ μ‘°μ •""")
            num_tokens = gr.Slider(
                50,
                4000,
                2000,
                step=1,
                label="μΆ”λ‘  단계당 μ΅œλŒ€ 토큰 수",
                interactive=True,
            )
            final_num_tokens = gr.Slider(
                50,
                4000,
                2000,
                step=1,
                label="μ΅œμ’… λ‹΅λ³€μ˜ μ΅œλŒ€ 토큰 수",
                interactive=True,
            )
            do_sample = gr.Checkbox(True, label="μƒ˜ν”Œλ§ μ‚¬μš©")
            temperature = gr.Slider(0.1, 1.0, 0.7, step=0.1, label="μ˜¨λ„")


    # μ‚¬μš©μžκ°€ λ©”μ‹œμ§€λ₯Ό μ œμΆœν•˜λ©΄ 봇이 μ‘λ‹΅ν•©λ‹ˆλ‹€
    msg.submit(
        user_input,
        [msg, chatbot],  # μž…λ ₯
        [msg, chatbot],  # 좜λ ₯
    ).then(
        bot,
        [
            chatbot,
            num_tokens,
            final_num_tokens,
            do_sample,
            temperature,
        ],  # μ‹€μ œλ‘œλŠ” "history" μž…λ ₯
        chatbot,  # 좜λ ₯μ—μ„œ μƒˆ νžˆμŠ€ν† λ¦¬ μ €μž₯
    )

if __name__ == "__main__":
    demo.queue().launch()