Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,20 @@
|
|
1 |
import re
|
2 |
import threading
|
3 |
-
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import time
|
7 |
-
import signal
|
8 |
import gradio as gr
|
9 |
import spaces
|
10 |
import transformers
|
11 |
-
from transformers import pipeline
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
"mistralai/Mistral-7B-Instruct-v0.2": "Mistral 7B Instruct v0.2",
|
23 |
-
"mistralai/Mistral-Small-3.1-24B-Base-2503": "Mistral Small 3.1 (24B)",
|
24 |
-
"google/gemma-3-27b-it": "Google Gemma 3 (27B)",
|
25 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct": "Qwen 2.5 Coder (32B)",
|
26 |
-
"open-r1/OlympicCoder-32B": "Olympic Coder (32B)"
|
27 |
-
}
|
28 |
-
|
29 |
-
# ๊ธฐ๋ณธ ๋ชจ๋ธ - ๊ฐ์ฅ ์์ ๋ชจ๋ธ๋ก ์ค์
|
30 |
-
DEFAULT_MODEL_KEY = list(available_models.keys())[0]
|
31 |
-
DEFAULT_MODEL_VALUE = available_models[DEFAULT_MODEL_KEY]
|
32 |
-
|
33 |
-
# ๋ชจ๋ธ ๋ก๋์ ์ฌ์ฉ๋๋ ์ ์ญ ๋ณ์
|
34 |
-
pipe = None
|
35 |
-
current_model_name = None
|
36 |
-
loading_in_progress = False
|
37 |
-
|
38 |
-
# Hugging Face ํ ํฐ์ผ๋ก ๋ก๊ทธ์ธ ์๋
|
39 |
-
try:
|
40 |
-
hf_token = os.getenv("HF_TOKEN")
|
41 |
-
if hf_token:
|
42 |
-
login(token=hf_token)
|
43 |
-
print("Hugging Face์ ์ฑ๊ณต์ ์ผ๋ก ๋ก๊ทธ์ธํ์ต๋๋ค.")
|
44 |
-
else:
|
45 |
-
print("๊ฒฝ๊ณ : HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค.")
|
46 |
-
except Exception as e:
|
47 |
-
print(f"Hugging Face ๋ก๊ทธ์ธ ์๋ฌ: {str(e)}")
|
48 |
|
49 |
# ์ต์ข
๋ต๋ณ์ ๊ฐ์งํ๊ธฐ ์ํ ๋ง์ปค
|
50 |
ANSWER_MARKER = "**๋ต๋ณ**"
|
@@ -64,69 +34,31 @@ rethink_prepends = [
|
|
64 |
f"\n{ANSWER_MARKER}\n",
|
65 |
]
|
66 |
|
|
|
67 |
# ์์ ํ์ ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ค์
|
68 |
latex_delimiters = [
|
69 |
{"left": "$$", "right": "$$", "display": True},
|
70 |
{"left": "$", "right": "$", "display": False},
|
71 |
]
|
72 |
|
73 |
-
# ๋ชจ๋ธ ํฌ๊ธฐ ๊ธฐ๋ฐ ๊ตฌ์ฑ - ๋ชจ๋ธ ํฌ๊ธฐ์ ๋ฐ๋ฅธ ์ต์ ์ค์ ์ ์
|
74 |
-
MODEL_CONFIG = {
|
75 |
-
"small": { # <10B
|
76 |
-
"max_memory": {0: "10GiB"},
|
77 |
-
"offload": False,
|
78 |
-
"quantization": None
|
79 |
-
},
|
80 |
-
"medium": { # 10B-30B
|
81 |
-
"max_memory": {0: "30GiB"},
|
82 |
-
"offload": False,
|
83 |
-
"quantization": None
|
84 |
-
},
|
85 |
-
"large": { # >30B
|
86 |
-
"max_memory": {0: "60GiB"},
|
87 |
-
"offload": True,
|
88 |
-
"quantization": None
|
89 |
-
}
|
90 |
-
}
|
91 |
-
|
92 |
-
def get_model_size_category(model_name):
|
93 |
-
"""๋ชจ๋ธ ํฌ๊ธฐ ์นดํ
๊ณ ๋ฆฌ ๊ฒฐ์ """
|
94 |
-
if "2B" in model_name or "3B" in model_name or "7B" in model_name or "8B" in model_name:
|
95 |
-
return "small"
|
96 |
-
elif "15B" in model_name or "24B" in model_name or "27B" in model_name:
|
97 |
-
return "medium"
|
98 |
-
elif "32B" in model_name or "70B" in model_name:
|
99 |
-
return "large"
|
100 |
-
else:
|
101 |
-
# ๊ธฐ๋ณธ๊ฐ์ผ๋ก small ๋ฐํ (์์ ์ ์ํด)
|
102 |
-
return "small"
|
103 |
-
|
104 |
-
def clear_gpu_memory():
|
105 |
-
"""GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ"""
|
106 |
-
global pipe
|
107 |
-
|
108 |
-
if pipe is not None:
|
109 |
-
del pipe
|
110 |
-
pipe = None
|
111 |
-
|
112 |
-
# CUDA ์บ์ ์ ๋ฆฌ
|
113 |
-
gc.collect()
|
114 |
-
if torch.cuda.is_available():
|
115 |
-
torch.cuda.empty_cache()
|
116 |
-
torch.cuda.synchronize()
|
117 |
|
118 |
def reformat_math(text):
|
119 |
-
"""Gradio ๊ตฌ๋ฌธ(Katex)์ ์ฌ์ฉํ๋๋ก MathJax ๊ตฌ๋ถ ๊ธฐํธ ์์ .
|
|
|
|
|
|
|
120 |
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
121 |
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
122 |
return text
|
123 |
|
|
|
124 |
def user_input(message, history: list):
|
125 |
"""์ฌ์ฉ์ ์
๋ ฅ์ ํ์คํ ๋ฆฌ์ ์ถ๊ฐํ๊ณ ์
๋ ฅ ํ
์คํธ ์์ ๋น์ฐ๊ธฐ"""
|
126 |
return "", history + [
|
127 |
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
|
128 |
]
|
129 |
|
|
|
130 |
def rebuild_messages(history: list):
|
131 |
"""์ค๊ฐ ์๊ฐ ๊ณผ์ ์์ด ๋ชจ๋ธ์ด ์ฌ์ฉํ ํ์คํ ๋ฆฌ์์ ๋ฉ์์ง ์ฌ๊ตฌ์ฑ"""
|
132 |
messages = []
|
@@ -141,122 +73,6 @@ def rebuild_messages(history: list):
|
|
141 |
messages.append({"role": h.role, "content": h.content})
|
142 |
return messages
|
143 |
|
144 |
-
def load_model(model_names):
|
145 |
-
"""์ ํ๋ ๋ชจ๋ธ ์ด๋ฆ์ ๋ฐ๋ผ ๋ชจ๋ธ ๋ก๋ (A100์ ์ต์ ํ๋ ์ค์ ์ฌ์ฉ)"""
|
146 |
-
global pipe, current_model_name, loading_in_progress
|
147 |
-
|
148 |
-
# ์ด๋ฏธ ๋ก๋ฉ ์ค์ธ ๊ฒฝ์ฐ
|
149 |
-
if loading_in_progress:
|
150 |
-
return "๋ค๋ฅธ ๋ชจ๋ธ์ด ์ด๋ฏธ ๋ก๋ ์ค์
๋๋ค. ์ ์ ๊ธฐ๋ค๋ ค์ฃผ์ธ์."
|
151 |
-
|
152 |
-
loading_in_progress = True
|
153 |
-
status_messages = []
|
154 |
-
|
155 |
-
try:
|
156 |
-
# ๊ธฐ์กด ๋ชจ๋ธ ์ ๋ฆฌ
|
157 |
-
clear_gpu_memory()
|
158 |
-
|
159 |
-
# ๋ชจ๋ธ์ด ์ ํ๋์ง ์์์ ๊ฒฝ์ฐ ๊ธฐ๋ณธ๊ฐ ์ง์
|
160 |
-
if not model_names:
|
161 |
-
model_name = DEFAULT_MODEL_KEY
|
162 |
-
else:
|
163 |
-
# ์ฒซ ๋ฒ์งธ ์ ํ๋ ๋ชจ๋ธ ์ฌ์ฉ
|
164 |
-
model_name = model_names[0]
|
165 |
-
|
166 |
-
# ๋ชจ๋ธ ํฌ๊ธฐ ์นดํ
๊ณ ๋ฆฌ ํ์ธ
|
167 |
-
size_category = get_model_size_category(model_name)
|
168 |
-
config = MODEL_CONFIG[size_category]
|
169 |
-
|
170 |
-
# ๋ก๋ฉ ์ํ ์
๋ฐ์ดํธ
|
171 |
-
status_messages.append(f"๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค... (ํฌ๊ธฐ: {size_category})")
|
172 |
-
|
173 |
-
# ๋ชจ๋ธ ๋ก๋ (ํฌ๊ธฐ์ ๋ฐ๋ผ ์ต์ ํ๋ ์ค์ ์ ์ฉ)
|
174 |
-
# HF_TOKEN ํ๊ฒฝ ๋ณ์ ํ์ธ
|
175 |
-
hf_token = os.getenv("HF_TOKEN")
|
176 |
-
# ๊ณตํต ๋งค๊ฐ๋ณ์
|
177 |
-
common_params = {
|
178 |
-
"token": hf_token, # ์ ๊ทผ ์ ํ ๋ชจ๋ธ์ ์ํ ํ ํฐ
|
179 |
-
"trust_remote_code": True,
|
180 |
-
}
|
181 |
-
|
182 |
-
# BitsAndBytes ์ฌ์ฉ ์ฌ๋ถ ํ์ธ
|
183 |
-
try:
|
184 |
-
import bitsandbytes
|
185 |
-
has_bitsandbytes = True
|
186 |
-
except ImportError:
|
187 |
-
has_bitsandbytes = False
|
188 |
-
status_messages.append("BitsAndBytes ๋ผ์ด๋ธ๋ฌ๋ฆฌ๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค. ์์ํ ์์ด ๋ก๋ํฉ๋๋ค.")
|
189 |
-
|
190 |
-
# ์๊ฐ ์ ํ ์ค์ (๋ชจ๋ธ ํฌ๊ธฐ์ ๋ฐ๋ผ ๋ค๋ฅด๊ฒ)
|
191 |
-
if size_category == "small":
|
192 |
-
load_timeout = 180 # 3๋ถ
|
193 |
-
elif size_category == "medium":
|
194 |
-
load_timeout = 300 # 5๋ถ
|
195 |
-
else:
|
196 |
-
load_timeout = 600 # 10๋ถ
|
197 |
-
|
198 |
-
# ๋ก๋ฉ ์์ ์๊ฐ
|
199 |
-
start_time = time.time()
|
200 |
-
|
201 |
-
# ์์ํ ์ค์ ์ด ํ์ํ๊ณ BitsAndBytes๋ฅผ ์ฌ์ฉํ ์ ์๋ ๊ฒฝ์ฐ
|
202 |
-
if config["quantization"] and has_bitsandbytes:
|
203 |
-
# ์์ํ ์ ์ฉ
|
204 |
-
from transformers import BitsAndBytesConfig
|
205 |
-
quantization_config = BitsAndBytesConfig(
|
206 |
-
load_in_4bit=config["quantization"] == "4bit",
|
207 |
-
bnb_4bit_compute_dtype=DTYPE
|
208 |
-
)
|
209 |
-
|
210 |
-
status_messages.append(f"๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค... (์์ํ ์ ์ฉ)")
|
211 |
-
|
212 |
-
model = AutoModelForCausalLM.from_pretrained(
|
213 |
-
model_name,
|
214 |
-
device_map="auto",
|
215 |
-
max_memory=config["max_memory"],
|
216 |
-
torch_dtype=DTYPE,
|
217 |
-
quantization_config=quantization_config,
|
218 |
-
offload_folder="offload" if config["offload"] else None,
|
219 |
-
**common_params
|
220 |
-
)
|
221 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, **common_params)
|
222 |
-
|
223 |
-
pipe = pipeline(
|
224 |
-
"text-generation",
|
225 |
-
model=model,
|
226 |
-
tokenizer=tokenizer,
|
227 |
-
torch_dtype=DTYPE,
|
228 |
-
device_map="auto"
|
229 |
-
)
|
230 |
-
else:
|
231 |
-
# ์์ํ ์์ด ๋ก๋
|
232 |
-
status_messages.append(f"๋ชจ๋ธ '{model_name}' ๋ก๋ ์ค... (ํ์ค ๋ฐฉ์)")
|
233 |
-
|
234 |
-
pipe = pipeline(
|
235 |
-
"text-generation",
|
236 |
-
model=model_name,
|
237 |
-
device_map="auto",
|
238 |
-
torch_dtype=DTYPE,
|
239 |
-
**common_params
|
240 |
-
)
|
241 |
-
|
242 |
-
# ์๊ฐ ์ ํ ์ด๊ณผ ํ์ธ
|
243 |
-
elapsed_time = time.time() - start_time
|
244 |
-
if elapsed_time > load_timeout:
|
245 |
-
clear_gpu_memory()
|
246 |
-
loading_in_progress = False
|
247 |
-
return f"๋ชจ๋ธ ๋ก๋ ์๊ฐ ์ด๊ณผ: {load_timeout}์ด๊ฐ ์ง๋ฌ์ต๋๋ค. ๋ค์ ์๋ํ์ธ์."
|
248 |
-
|
249 |
-
current_model_name = model_name
|
250 |
-
loading_in_progress = False
|
251 |
-
return f"๋ชจ๋ธ '{model_name}'์ด(๊ฐ) ์ฑ๊ณต์ ์ผ๋ก ๋ก๋๋์์ต๋๋ค. (์ต์ ํ: {size_category}, ์์์๊ฐ: {elapsed_time:.1f}์ด)"
|
252 |
-
|
253 |
-
except Exception as e:
|
254 |
-
loading_in_progress = False
|
255 |
-
error_msg = f"๋ชจ๋ธ ๋ก๋ ์คํจ: {str(e)}"
|
256 |
-
print(f"์ค๋ฅ: {error_msg}")
|
257 |
-
return error_msg
|
258 |
-
finally:
|
259 |
-
loading_in_progress = False
|
260 |
|
261 |
@spaces.GPU
|
262 |
def bot(
|
@@ -267,187 +83,71 @@ def bot(
|
|
267 |
temperature: float,
|
268 |
):
|
269 |
"""๋ชจ๋ธ์ด ์ง๋ฌธ์ ๋ต๋ณํ๋๋ก ํ๊ธฐ"""
|
270 |
-
global pipe, current_model_name
|
271 |
-
|
272 |
-
# ๋ชจ๋ธ์ด ๋ก๋๋์ง ์์๋ค๋ฉด ์ค๋ฅ ๋ฉ์์ง ํ์
|
273 |
-
if pipe is None:
|
274 |
-
history.append(
|
275 |
-
gr.ChatMessage(
|
276 |
-
role="assistant",
|
277 |
-
content="๋ชจ๋ธ์ด ๋ก๋๋์ง ์์์ต๋๋ค. ํ๋ ์ด์์ ๋ชจ๋ธ์ ์ ํํ๊ณ '๋ชจ๋ธ ๋ก๋' ๋ฒํผ์ ํด๋ฆญํด ์ฃผ์ธ์.",
|
278 |
-
)
|
279 |
-
)
|
280 |
-
yield history
|
281 |
-
return
|
282 |
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
max_num_tokens = min(max_num_tokens, 1000)
|
290 |
-
final_num_tokens = min(final_num_tokens, 1500)
|
291 |
-
|
292 |
-
# ๋์ค์ ์ค๋ ๋์์ ํ ํฐ์ ์คํธ๋ฆผ์ผ๋ก ๊ฐ์ ธ์ค๊ธฐ ์ํจ
|
293 |
-
streamer = transformers.TextIteratorStreamer(
|
294 |
-
pipe.tokenizer,
|
295 |
-
skip_special_tokens=True,
|
296 |
-
skip_prompt=True,
|
297 |
-
)
|
298 |
|
299 |
-
|
300 |
-
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
)
|
309 |
)
|
|
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
def timeout_handler(signum, frame):
|
319 |
-
raise TimeoutError("์์ฒญ ์ฒ๋ฆฌ ์๊ฐ์ด ์ด๊ณผ๋์์ต๋๋ค.")
|
320 |
-
|
321 |
-
# ๊ฐ ๋จ๊ณ๋ง๋ค ์ต๋ 120์ด ํ์์์ ์ค์
|
322 |
-
timeout_seconds = 120
|
323 |
-
|
324 |
-
for i, prepend in enumerate(rethink_prepends):
|
325 |
-
if i > 0:
|
326 |
-
messages[-1]["content"] += "\n\n"
|
327 |
-
messages[-1]["content"] += prepend.format(question=question)
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
history[-1].content +=
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
history.append(gr.ChatMessage(role="assistant", content=""))
|
356 |
-
|
357 |
-
# ํ์์์ ์ค์ (Unix ์์คํ
์์๋ง ์๋)
|
358 |
-
try:
|
359 |
-
if hasattr(signal, 'SIGALRM'):
|
360 |
-
signal.signal(signal.SIGALRM, timeout_handler)
|
361 |
-
signal.alarm(timeout_seconds)
|
362 |
-
|
363 |
-
# ํ ํฐ ์คํธ๋ฆฌ๋ฐ
|
364 |
-
token_count = 0
|
365 |
-
for token in streamer:
|
366 |
-
history[-1].content += token
|
367 |
-
history[-1].content = reformat_math(history[-1].content)
|
368 |
-
token_count += 1
|
369 |
-
|
370 |
-
# 10๊ฐ ํ ํฐ๋ง๋ค yield (UI ์๋ต์ฑ ํฅ์)
|
371 |
-
if token_count % 10 == 0:
|
372 |
-
yield history
|
373 |
-
|
374 |
-
# ๋จ์ ๋ด์ฉ yield
|
375 |
-
yield history
|
376 |
-
|
377 |
-
# ํ์์์ ํด์
|
378 |
-
if hasattr(signal, 'SIGALRM'):
|
379 |
-
signal.alarm(0)
|
380 |
-
|
381 |
-
except TimeoutError:
|
382 |
-
if hasattr(signal, 'SIGALRM'):
|
383 |
-
signal.alarm(0)
|
384 |
-
history[-1].content += "\n\nโ ๏ธ ์๋ต ์์ฑ ์๊ฐ์ด ์ด๊ณผ๋์์ต๋๋ค. ๋ค์ ๋จ๊ณ๋ก ์งํํฉ๋๋ค."
|
385 |
-
yield history
|
386 |
-
continue
|
387 |
-
|
388 |
-
# ์ต๋ 30์ด ๋๊ธฐ ํ ๋ค์ ๋จ๊ณ๋ก ์งํ
|
389 |
-
join_start_time = time.time()
|
390 |
-
while t.is_alive() and (time.time() - join_start_time) < 30:
|
391 |
-
t.join(1) # 1์ด๋ง๋ค ํ์ธ
|
392 |
-
|
393 |
-
# ์ค๋ ๋๊ฐ ์ฌ์ ํ ์คํ ์ค์ด๋ฉด ๊ฐ์ ์งํ
|
394 |
-
if t.is_alive():
|
395 |
-
history[-1].content += "\n\nโ ๏ธ ์๋ต ์์ฑ์ด ์์๋ณด๋ค ์ค๋ ๊ฑธ๋ฆฝ๋๋ค. ๋ค์ ๋จ๊ณ๋ก ์งํํฉ๋๋ค."
|
396 |
-
yield history
|
397 |
-
|
398 |
-
# ๋ํ ๋ชจ๋ธ์ธ ๊ฒฝ์ฐ ๊ฐ ๋จ๊ณ ํ ๋ถ๋ถ์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
399 |
-
if size_category == "large" and torch.cuda.is_available():
|
400 |
-
torch.cuda.empty_cache()
|
401 |
-
|
402 |
-
except Exception as e:
|
403 |
-
# ์ค๋ฅ ๋ฐ์์ ์ฌ์ฉ์์๊ฒ ์๋ฆผ
|
404 |
-
import traceback
|
405 |
-
error_msg = f"\n\nโ ๏ธ ์ฒ๋ฆฌ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}\n{traceback.format_exc()}"
|
406 |
-
|
407 |
-
if len(history) > 0 and isinstance(history[-1], gr.ChatMessage) and history[-1].role == "assistant":
|
408 |
-
history[-1].content += error_msg
|
409 |
-
else:
|
410 |
-
history.append(gr.ChatMessage(role="assistant", content=error_msg))
|
411 |
-
|
412 |
-
yield history
|
413 |
|
414 |
yield history
|
415 |
|
416 |
|
417 |
-
|
418 |
-
def get_gpu_info():
|
419 |
-
if not torch.cuda.is_available():
|
420 |
-
return "GPU๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค."
|
421 |
-
|
422 |
-
gpu_info = []
|
423 |
-
for i in range(torch.cuda.device_count()):
|
424 |
-
gpu_name = torch.cuda.get_device_name(i)
|
425 |
-
total_memory = torch.cuda.get_device_properties(i).total_memory / 1024**3
|
426 |
-
gpu_info.append(f"GPU {i}: {gpu_name} ({total_memory:.1f} GB)")
|
427 |
-
|
428 |
-
return "\n".join(gpu_info)
|
429 |
-
|
430 |
-
# ๋น๋๊ธฐ ๋์ ๋๊ธฐ ๋ฐฉ์์ผ๋ก ๋ชจ๋ธ ์๋ ๋ก๋ (๊ฐ์ํ)
|
431 |
-
def load_default_model():
|
432 |
-
model_key = DEFAULT_MODEL_KEY
|
433 |
-
return load_model([model_key])
|
434 |
-
|
435 |
-
# Gradio ์ธํฐํ์ด์ค
|
436 |
-
with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Service") as demo:
|
437 |
-
# ์๋จ์ ํ์ดํ๊ณผ ์ค๋ช
์ถ๊ฐ
|
438 |
-
gr.Markdown("""
|
439 |
-
# ThinkFlow
|
440 |
-
## A thought amplification service that implants step-by-step reasoning abilities into LLMs without model modification
|
441 |
-
""")
|
442 |
-
|
443 |
with gr.Row(scale=1):
|
444 |
with gr.Column(scale=5):
|
445 |
-
|
446 |
chatbot = gr.Chatbot(
|
447 |
scale=1,
|
448 |
type="messages",
|
449 |
latex_delimiters=latex_delimiters,
|
450 |
-
height=600,
|
451 |
)
|
452 |
msg = gr.Textbox(
|
453 |
submit_btn=True,
|
@@ -456,68 +156,27 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
456 |
placeholder="์ฌ๊ธฐ์ ์ง๋ฌธ์ ์
๋ ฅํ์ธ์.",
|
457 |
autofocus=True,
|
458 |
)
|
459 |
-
|
460 |
with gr.Column(scale=1):
|
461 |
-
# ํ๋์จ์ด ์ ๋ณด ํ์
|
462 |
-
gpu_info = gr.Markdown(f"**์ฌ์ฉ ๊ฐ๋ฅํ ํ๋์จ์ด:**\n{get_gpu_info()}")
|
463 |
-
|
464 |
-
# ๋ชจ๋ธ ์ ํ ์น์
์ถ๊ฐ
|
465 |
-
gr.Markdown("""## ๋ชจ๋ธ ์ ํ""")
|
466 |
-
model_selector = gr.Radio(
|
467 |
-
choices=list(available_models.values()),
|
468 |
-
value=DEFAULT_MODEL_VALUE,
|
469 |
-
label="์ฌ์ฉํ LLM ๋ชจ๋ธ ์ ํ",
|
470 |
-
)
|
471 |
-
|
472 |
-
# ๋ชจ๋ธ ๋ก๋ ๋ฒํผ
|
473 |
-
load_model_btn = gr.Button("๋ชจ๋ธ ๋ก๋", variant="primary")
|
474 |
-
model_status = gr.Textbox(label="๋ชจ๋ธ ์ํ", interactive=False, value="์์ ์ ์์ ๋ชจ๋ธ์ ์๋์ผ๋ก ๋ก๋ํฉ๋๋ค...")
|
475 |
-
|
476 |
-
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ๋ฒํผ
|
477 |
-
clear_memory_btn = gr.Button("GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ", variant="secondary")
|
478 |
-
|
479 |
gr.Markdown("""## ๋งค๊ฐ๋ณ์ ์กฐ์ """)
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
# ์์ ์ ์๋์ผ๋ก ๋ชจ๋ธ ๋ก๋ - ์ด์ ๋๊ธฐ์ ์ผ๋ก ์ฒ๋ฆฌ
|
501 |
-
demo.load(load_default_model, [], [model_status])
|
502 |
-
|
503 |
-
# ์ ํ๋ ๋ชจ๋ธ ๋ก๋ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
504 |
-
def get_model_names(selected_model):
|
505 |
-
# ํ์ ์ด๋ฆ์์ ์๋ ๋ชจ๋ธ ์ด๋ฆ์ผ๋ก ๋ณํ
|
506 |
-
inverse_map = {v: k for k, v in available_models.items()}
|
507 |
-
return [inverse_map[selected_model]] if selected_model else []
|
508 |
-
|
509 |
-
load_model_btn.click(
|
510 |
-
lambda selected: load_model(get_model_names(selected)),
|
511 |
-
inputs=[model_selector],
|
512 |
-
outputs=[model_status]
|
513 |
-
)
|
514 |
-
|
515 |
-
# GPU ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
516 |
-
clear_memory_btn.click(
|
517 |
-
lambda: (clear_gpu_memory(), "GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ์ ๋ฆฌ๋์์ต๋๋ค."),
|
518 |
-
inputs=[],
|
519 |
-
outputs=[model_status]
|
520 |
-
)
|
521 |
|
522 |
# ์ฌ์ฉ์๊ฐ ๋ฉ์์ง๋ฅผ ์ ์ถํ๋ฉด ๋ด์ด ์๋ตํฉ๋๋ค
|
523 |
msg.submit(
|
@@ -537,19 +196,4 @@ with gr.Blocks(fill_height=True, title="ThinkFlow - Step-by-step Reasoning Servi
|
|
537 |
)
|
538 |
|
539 |
if __name__ == "__main__":
|
540 |
-
|
541 |
-
print(f"GPU ์ฌ์ฉ ๊ฐ๋ฅ: {torch.cuda.is_available()}")
|
542 |
-
if torch.cuda.is_available():
|
543 |
-
print(f"์ฌ์ฉ ๊ฐ๋ฅํ GPU ๊ฐ์: {torch.cuda.device_count()}")
|
544 |
-
print(f"ํ์ฌ GPU: {torch.cuda.current_device()}")
|
545 |
-
print(f"GPU ์ด๋ฆ: {torch.cuda.get_device_name(0)}")
|
546 |
-
|
547 |
-
# HF_TOKEN ํ๊ฒฝ ๋ณ์ ํ์ธ
|
548 |
-
hf_token = os.getenv("HF_TOKEN")
|
549 |
-
if hf_token:
|
550 |
-
print("HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ด ์์ต๋๋ค.")
|
551 |
-
else:
|
552 |
-
print("๊ฒฝ๊ณ : HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค. ์ ํ๋ ๋ชจ๋ธ์ ์ ๊ทผํ ์ ์์ต๋๋ค.")
|
553 |
-
|
554 |
-
# ํ ์ฌ์ฉ ๋ฐ ์ฑ ์คํ
|
555 |
-
demo.queue(max_size=10).launch()
|
|
|
1 |
import re
|
2 |
import threading
|
3 |
+
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
import transformers
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋ฉ
|
10 |
+
model_name = "Qwen/Qwen2-1.5B-Instruct"
|
11 |
+
if gr.NO_RELOAD:
|
12 |
+
pipe = pipeline(
|
13 |
+
"text-generation",
|
14 |
+
model=model_name,
|
15 |
+
device_map="auto",
|
16 |
+
torch_dtype="auto",
|
17 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# ์ต์ข
๋ต๋ณ์ ๊ฐ์งํ๊ธฐ ์ํ ๋ง์ปค
|
20 |
ANSWER_MARKER = "**๋ต๋ณ**"
|
|
|
34 |
f"\n{ANSWER_MARKER}\n",
|
35 |
]
|
36 |
|
37 |
+
|
38 |
# ์์ ํ์ ๋ฌธ์ ํด๊ฒฐ์ ์ํ ์ค์
|
39 |
latex_delimiters = [
|
40 |
{"left": "$$", "right": "$$", "display": True},
|
41 |
{"left": "$", "right": "$", "display": False},
|
42 |
]
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def reformat_math(text):
|
46 |
+
"""Gradio ๊ตฌ๋ฌธ(Katex)์ ์ฌ์ฉํ๋๋ก MathJax ๊ตฌ๋ถ ๊ธฐํธ ์์ .
|
47 |
+
์ด๊ฒ์ Gradio์์ ์ํ ๊ณต์์ ํ์ํ๊ธฐ ์ํ ์์ ํด๊ฒฐ์ฑ
์
๋๋ค. ํ์ฌ๋ก์๋
|
48 |
+
๋ค๋ฅธ latex_delimiters๋ฅผ ์ฌ์ฉํ์ฌ ์์๋๋ก ์๋ํ๊ฒ ํ๋ ๋ฐฉ๋ฒ์ ์ฐพ์ง ๋ชปํ์ต๋๋ค...
|
49 |
+
"""
|
50 |
text = re.sub(r"\\\[\s*(.*?)\s*\\\]", r"$$\1$$", text, flags=re.DOTALL)
|
51 |
text = re.sub(r"\\\(\s*(.*?)\s*\\\)", r"$\1$", text, flags=re.DOTALL)
|
52 |
return text
|
53 |
|
54 |
+
|
55 |
def user_input(message, history: list):
|
56 |
"""์ฌ์ฉ์ ์
๋ ฅ์ ํ์คํ ๋ฆฌ์ ์ถ๊ฐํ๊ณ ์
๋ ฅ ํ
์คํธ ์์ ๋น์ฐ๊ธฐ"""
|
57 |
return "", history + [
|
58 |
gr.ChatMessage(role="user", content=message.replace(ANSWER_MARKER, ""))
|
59 |
]
|
60 |
|
61 |
+
|
62 |
def rebuild_messages(history: list):
|
63 |
"""์ค๊ฐ ์๊ฐ ๊ณผ์ ์์ด ๋ชจ๋ธ์ด ์ฌ์ฉํ ํ์คํ ๋ฆฌ์์ ๋ฉ์์ง ์ฌ๊ตฌ์ฑ"""
|
64 |
messages = []
|
|
|
73 |
messages.append({"role": h.role, "content": h.content})
|
74 |
return messages
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
@spaces.GPU
|
78 |
def bot(
|
|
|
83 |
temperature: float,
|
84 |
):
|
85 |
"""๋ชจ๋ธ์ด ์ง๋ฌธ์ ๋ต๋ณํ๋๋ก ํ๊ธฐ"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# ๋์ค์ ์ค๋ ๋์์ ํ ํฐ์ ์คํธ๋ฆผ์ผ๋ก ๊ฐ์ ธ์ค๊ธฐ ์ํจ
|
88 |
+
streamer = transformers.TextIteratorStreamer(
|
89 |
+
pipe.tokenizer, # pyright: ignore
|
90 |
+
skip_special_tokens=True,
|
91 |
+
skip_prompt=True,
|
92 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# ํ์ํ ๊ฒฝ์ฐ ์ถ๋ก ์ ์ง๋ฌธ์ ๋ค์ ์ฝ์
ํ๊ธฐ ์ํจ
|
95 |
+
question = history[-1]["content"]
|
96 |
|
97 |
+
# ๋ณด์กฐ์ ๋ฉ์์ง ์ค๋น
|
98 |
+
history.append(
|
99 |
+
gr.ChatMessage(
|
100 |
+
role="assistant",
|
101 |
+
content=str(""),
|
102 |
+
metadata={"title": "๐ง ์๊ฐ ์ค...", "status": "pending"},
|
|
|
103 |
)
|
104 |
+
)
|
105 |
|
106 |
+
# ํ์ฌ ์ฑํ
์ ํ์๋ ์ถ๋ก ๊ณผ์
|
107 |
+
messages = rebuild_messages(history)
|
108 |
+
for i, prepend in enumerate(rethink_prepends):
|
109 |
+
if i > 0:
|
110 |
+
messages[-1]["content"] += "\n\n"
|
111 |
+
messages[-1]["content"] += prepend.format(question=question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
num_tokens = int(
|
114 |
+
max_num_tokens if ANSWER_MARKER not in prepend else final_num_tokens
|
115 |
+
)
|
116 |
+
t = threading.Thread(
|
117 |
+
target=pipe,
|
118 |
+
args=(messages,),
|
119 |
+
kwargs=dict(
|
120 |
+
max_new_tokens=num_tokens,
|
121 |
+
streamer=streamer,
|
122 |
+
do_sample=do_sample,
|
123 |
+
temperature=temperature,
|
124 |
+
),
|
125 |
+
)
|
126 |
+
t.start()
|
127 |
+
|
128 |
+
# ์ ๋ด์ฉ์ผ๋ก ํ์คํ ๋ฆฌ ์ฌ๊ตฌ์ฑ
|
129 |
+
history[-1].content += prepend.format(question=question)
|
130 |
+
if ANSWER_MARKER in prepend:
|
131 |
+
history[-1].metadata = {"title": "๐ญ ์ฌ๊ณ ๊ณผ์ ", "status": "done"}
|
132 |
+
# ์๊ฐ ์ข
๋ฃ, ์ด์ ๋ต๋ณ์
๋๋ค (์ค๊ฐ ๋จ๊ณ์ ๋ํ ๋ฉํ๋ฐ์ดํฐ ์์)
|
133 |
+
history.append(gr.ChatMessage(role="assistant", content=""))
|
134 |
+
for token in streamer:
|
135 |
+
history[-1].content += token
|
136 |
+
history[-1].content = reformat_math(history[-1].content)
|
137 |
+
yield history
|
138 |
+
t.join()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
yield history
|
141 |
|
142 |
|
143 |
+
with gr.Blocks(fill_height=True, title="๋ชจ๋ LLM ๋ชจ๋ธ์ ์ถ๋ก ๋ฅ๋ ฅ ๋ถ์ฌํ๊ธฐ") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Row(scale=1):
|
145 |
with gr.Column(scale=5):
|
146 |
+
|
147 |
chatbot = gr.Chatbot(
|
148 |
scale=1,
|
149 |
type="messages",
|
150 |
latex_delimiters=latex_delimiters,
|
|
|
151 |
)
|
152 |
msg = gr.Textbox(
|
153 |
submit_btn=True,
|
|
|
156 |
placeholder="์ฌ๊ธฐ์ ์ง๋ฌธ์ ์
๋ ฅํ์ธ์.",
|
157 |
autofocus=True,
|
158 |
)
|
|
|
159 |
with gr.Column(scale=1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
gr.Markdown("""## ๋งค๊ฐ๋ณ์ ์กฐ์ """)
|
161 |
+
num_tokens = gr.Slider(
|
162 |
+
50,
|
163 |
+
4000,
|
164 |
+
2000,
|
165 |
+
step=1,
|
166 |
+
label="์ถ๋ก ๋จ๊ณ๋น ์ต๋ ํ ํฐ ์",
|
167 |
+
interactive=True,
|
168 |
+
)
|
169 |
+
final_num_tokens = gr.Slider(
|
170 |
+
50,
|
171 |
+
4000,
|
172 |
+
2000,
|
173 |
+
step=1,
|
174 |
+
label="์ต์ข
๋ต๋ณ์ ์ต๋ ํ ํฐ ์",
|
175 |
+
interactive=True,
|
176 |
+
)
|
177 |
+
do_sample = gr.Checkbox(True, label="์ํ๋ง ์ฌ์ฉ")
|
178 |
+
temperature = gr.Slider(0.1, 1.0, 0.7, step=0.1, label="์จ๋")
|
179 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# ์ฌ์ฉ์๊ฐ ๋ฉ์์ง๋ฅผ ์ ์ถํ๋ฉด ๋ด์ด ์๋ตํฉ๋๋ค
|
182 |
msg.submit(
|
|
|
196 |
)
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|