Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from PIL import Image | |
import os | |
import spaces | |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor | |
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline | |
from kolors.models.modeling_chatglm import ChatGLMModel | |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
from kolors.models.unet_2d_condition import UNet2DConditionModel | |
from diffusers import AutoencoderKL, EulerDiscreteScheduler | |
from huggingface_hub import snapshot_download | |
device = "cuda" | |
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
ckpt_dir = f'{root_dir}/weights/Kolors' | |
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir) | |
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus") | |
# Load models | |
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) | |
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', | |
ignore_mismatched_sizes=True | |
).to(dtype=torch.float16, device=device) | |
ip_img_size = 336 | |
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) | |
pipe = StableDiffusionXLPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
image_encoder=image_encoder, | |
feature_extractor=clip_image_processor, | |
force_zeros_for_empty_prompt=False | |
).to(device) | |
if hasattr(pipe.unet, 'encoder_hid_proj'): | |
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj | |
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"]) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# ---------------------------------------------- | |
# infer ํจ์ (๊ธฐ์กด ๋ก์ง ๊ทธ๋๋ก ์ ์ง) | |
# ---------------------------------------------- | |
def infer( | |
user_prompt, | |
ip_adapter_image, | |
ip_adapter_scale=0.5, | |
negative_prompt="", | |
seed=100, | |
randomize_seed=False, | |
width=1024, | |
height=1024, | |
guidance_scale=5.0, | |
num_inference_steps=50, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
# ์จ๊ฒจ์ง(๊ธฐ๋ณธ/ํ์) ํ๋กฌํํธ | |
hidden_prompt = ( | |
"Studio Ghibli animation style, featuring whimsical characters with expressive eyes " | |
"and fluid movements. Lush, detailed natural environments with ethereal lighting " | |
"and soft color palettes of blues, greens, and warm earth tones." | |
) | |
# ์ค์ ๋ก ํ์ดํ๋ผ์ธ์ ์ ๋ฌํ ์ต์ข ํ๋กฌํํธ | |
prompt = f"{hidden_prompt}, {user_prompt}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
pipe.to("cuda") | |
image_encoder.to("cuda") | |
pipe.image_encoder = image_encoder | |
pipe.set_ip_adapter_scale([ip_adapter_scale]) | |
image = pipe( | |
prompt=prompt, | |
ip_adapter_image=[ip_adapter_image], | |
negative_prompt=negative_prompt, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=1, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = [ | |
[ | |
"background alps", | |
"gh0.webp", | |
0.5 | |
], | |
[ | |
"dancing", | |
"gh5.jpg", | |
0.5 | |
], | |
[ | |
"smile", | |
"gh2.jpg", | |
0.5 | |
], | |
[ | |
"3d style", | |
"gh3.webp", | |
0.6 | |
], | |
[ | |
"with Pikachu", | |
"gh4.jpg", | |
0.5 | |
], | |
[ | |
" ", | |
"gh7.jpg", | |
0.6 | |
], | |
[ | |
"sunglass", | |
"gh1.jpg", | |
0.95 | |
], | |
] | |
# -------------------------- | |
# ๊ฐ์ ๋ UI๋ฅผ ์ํ CSS | |
# -------------------------- | |
css = """ | |
body { | |
background: linear-gradient(135deg, #f5f7fa, #c3cfe2); | |
font-family: 'Helvetica Neue', Arial, sans-serif; | |
color: #333; | |
margin: 0; | |
padding: 0; | |
} | |
#col-container { | |
margin: 0 auto !important; | |
max-width: 720px; | |
background: rgba(255,255,255,0.85); | |
border-radius: 16px; | |
padding: 2rem; | |
box-shadow: 0 8px 24px rgba(0,0,0,0.1); | |
} | |
#header-title { | |
text-align: center; | |
font-size: 2rem; | |
font-weight: bold; | |
margin-bottom: 1rem; | |
} | |
#prompt-row { | |
display: flex; | |
gap: 0.5rem; | |
align-items: center; | |
margin-bottom: 1rem; | |
} | |
#prompt-text { | |
flex: 1; | |
} | |
#result img { | |
object-position: top; | |
border-radius: 8px; | |
} | |
#result .image-container { | |
height: 100%; | |
} | |
.gr-button { | |
background-color: #2E8BFB !important; | |
color: white !important; | |
border: none !important; | |
transition: background-color 0.2s ease; | |
} | |
.gr-button:hover { | |
background-color: #186EDB !important; | |
} | |
.gr-slider input[type=range] { | |
accent-color: #2E8BFB !important; | |
} | |
.gr-box { | |
background-color: #fafafa !important; | |
border: 1px solid #ddd !important; | |
border-radius: 8px !important; | |
padding: 1rem !important; | |
} | |
#advanced-settings { | |
margin-top: 1rem; | |
border-radius: 8px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("<div id='header-title'>Beyond Ghibli Reimagined</div>") | |
# ์๋จ: ํ๋กฌํํธ ์ ๋ ฅ + ์คํ ๋ฒํผ | |
with gr.Row(elem_id="prompt-row"): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
elem_id="prompt-text", | |
) | |
run_button = gr.Button("Run", elem_id="run-button") | |
# ๊ฐ์ด๋ฐ: ์ด๋ฏธ์ง ์ ๋ ฅ๊ณผ ์ฌ๋ผ์ด๋, ๊ฒฐ๊ณผ ์ด๋ฏธ์ง | |
with gr.Row(): | |
with gr.Column(): | |
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") | |
ip_adapter_scale = gr.Slider( | |
label="Image influence scale", | |
info="Use 1 for creating variations", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.5, | |
) | |
result = gr.Image(label="Result", elem_id="result") | |
# ํ๋จ: ๊ณ ๊ธ ์ค์ (Accordion) | |
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=2, | |
placeholder=( | |
"Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, " | |
"missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, " | |
"normal quality, jpeg artifacts, signature, watermark, username, blurry, " | |
"artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, " | |
"3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)" | |
), | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
) | |
# ์์๋ค | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt, ip_adapter_image, ip_adapter_scale], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
# ๋ฒํผ ํด๋ฆญ/ํ๋กฌํํธ ์ํฐ ์ ์คํ | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
ip_adapter_image, | |
ip_adapter_scale, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps | |
], | |
outputs=[result, seed] | |
) | |
demo.queue().launch() | |