Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,540 Bytes
9887d4c 7696de6 9887d4c d5c7e06 a1e9510 7696de6 9887d4c 7696de6 d5c7e06 af079bb b93d27c 7696de6 9d21a93 7696de6 b93d27c 7696de6 af079bb 9887d4c 6d1b6ef ffe8446 6d1b6ef eef596d 6d1b6ef 9887d4c 7696de6 9d21a93 8c21422 4bacbb7 7696de6 9887d4c 7696de6 5072f90 7696de6 9887d4c 5072f90 9887d4c 6d1b6ef 6bf8825 3ce2990 6d1b6ef 3ce2990 6bf8825 3ce2990 6d1b6ef 6bf8825 6d1b6ef 6bf8825 6d1b6ef 6bf8825 6d1b6ef 6bf8825 ba85a2c 6d1b6ef 6bf8825 0b8aefb 3ce2990 0b8aefb 9887d4c ffe8446 6d1b6ef ffe8446 9887d4c ffe8446 7696de6 ffe8446 9887d4c ffe8446 fbdf399 ffe8446 fbdf399 ffe8446 2935cbc 9887d4c 6d1b6ef 9887d4c ffe8446 9887d4c ffe8446 9887d4c ffe8446 9887d4c ffe8446 9887d4c ffe8446 7696de6 7e829d4 e3acd43 7e829d4 fbdf399 9887d4c ffe8446 9887d4c ffe8446 6d1b6ef 9887d4c 099c99b 9887d4c 099c99b 9887d4c 099c99b 9887d4c 7696de6 9887d4c 20da670 9887d4c ffe8446 9887d4c 7696de6 8245d19 7696de6 5ddbee5 9887d4c ffe8446 f8ac431 7696de6 6d1b6ef 7696de6 9887d4c 6d1b6ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import os
import spaces
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import AutoencoderKL, EulerDiscreteScheduler
from huggingface_hub import snapshot_download
device = "cuda"
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
ckpt_dir = f'{root_dir}/weights/Kolors'
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")
# Load models
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
ignore_mismatched_sizes=True
).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
pipe = StableDiffusionXLPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
).to(device)
if hasattr(pipe.unet, 'encoder_hid_proj'):
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# ----------------------------------------------
# infer ํจ์ (๊ธฐ์กด ๋ก์ง ๊ทธ๋๋ก ์ ์ง)
# ----------------------------------------------
@spaces.GPU(duration=80)
def infer(
user_prompt,
ip_adapter_image,
ip_adapter_scale=0.5,
negative_prompt="",
seed=100,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=5.0,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True)
):
# ์จ๊ฒจ์ง(๊ธฐ๋ณธ/ํ์) ํ๋กฌํํธ
hidden_prompt = (
"Studio Ghibli animation style, featuring whimsical characters with expressive eyes "
"and fluid movements. Lush, detailed natural environments with ethereal lighting "
"and soft color palettes of blues, greens, and warm earth tones."
)
# ์ค์ ๋ก ํ์ดํ๋ผ์ธ์ ์ ๋ฌํ ์ต์ข
ํ๋กฌํํธ
prompt = f"{hidden_prompt}, {user_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe.to("cuda")
image_encoder.to("cuda")
pipe.image_encoder = image_encoder
pipe.set_ip_adapter_scale([ip_adapter_scale])
image = pipe(
prompt=prompt,
ip_adapter_image=[ip_adapter_image],
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
return image, seed
examples = [
[
"background alps",
"gh0.webp",
0.5
],
[
"dancing",
"gh5.jpg",
0.5
],
[
"smile",
"gh2.jpg",
0.5
],
[
"3d style",
"gh3.webp",
0.6
],
[
"with Pikachu",
"gh4.jpg",
0.5
],
[
" ",
"gh7.jpg",
0.6
],
[
"sunglass",
"gh1.jpg",
0.95
],
]
# --------------------------
# ๊ฐ์ ๋ UI๋ฅผ ์ํ CSS
# --------------------------
css = """
body {
background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
font-family: 'Helvetica Neue', Arial, sans-serif;
color: #333;
margin: 0;
padding: 0;
}
#col-container {
margin: 0 auto !important;
max-width: 720px;
background: rgba(255,255,255,0.85);
border-radius: 16px;
padding: 2rem;
box-shadow: 0 8px 24px rgba(0,0,0,0.1);
}
#header-title {
text-align: center;
font-size: 2rem;
font-weight: bold;
margin-bottom: 1rem;
}
#prompt-row {
display: flex;
gap: 0.5rem;
align-items: center;
margin-bottom: 1rem;
}
#prompt-text {
flex: 1;
}
#result img {
object-position: top;
border-radius: 8px;
}
#result .image-container {
height: 100%;
}
.gr-button {
background-color: #2E8BFB !important;
color: white !important;
border: none !important;
transition: background-color 0.2s ease;
}
.gr-button:hover {
background-color: #186EDB !important;
}
.gr-slider input[type=range] {
accent-color: #2E8BFB !important;
}
.gr-box {
background-color: #fafafa !important;
border: 1px solid #ddd !important;
border-radius: 8px !important;
padding: 1rem !important;
}
#advanced-settings {
margin-top: 1rem;
border-radius: 8px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<div id='header-title'>Beyond Ghibli Reimagined</div>")
# ์๋จ: ํ๋กฌํํธ ์
๋ ฅ + ์คํ ๋ฒํผ
with gr.Row(elem_id="prompt-row"):
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text",
)
run_button = gr.Button("Run", elem_id="run-button")
# ๊ฐ์ด๋ฐ: ์ด๋ฏธ์ง ์
๋ ฅ๊ณผ ์ฌ๋ผ์ด๋, ๊ฒฐ๊ณผ ์ด๋ฏธ์ง
with gr.Row():
with gr.Column():
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
ip_adapter_scale = gr.Slider(
label="Image influence scale",
info="Use 1 for creating variations",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.5,
)
result = gr.Image(label="Result", elem_id="result")
# ํ๋จ: ๊ณ ๊ธ ์ค์ (Accordion)
with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=2,
placeholder=(
"Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, "
"missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, "
"normal quality, jpeg artifacts, signature, watermark, username, blurry, "
"artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, "
"3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)"
),
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
# ์์๋ค
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, ip_adapter_image, ip_adapter_scale],
outputs=[result, seed],
cache_examples="lazy"
)
# ๋ฒํผ ํด๋ฆญ/ํ๋กฌํํธ ์ํฐ ์ ์คํ
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
ip_adapter_image,
ip_adapter_scale,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps
],
outputs=[result, seed]
)
demo.queue().launch()
|