bennyguo
invert zerogpu flag
c038d42
raw
history blame
11.4 kB
import gradio as gr
import os
import sys
import subprocess
from huggingface_hub import snapshot_download, HfFolder
import random # Import random for seed generation
# --- Repo Setup ---
DEFAULT_REPO_DIR = "./TripoSG-repo" # Directory to clone into if not using local path
REPO_GIT_URL = "github.com/VAST-AI-Research/TripoSG.git" # Base URL without schema/token
BRANCH = "scribble"
code_source_path = None
# Option 1: Use local path if TRIPOSG_CODE_PATH env var is set
local_code_path = os.environ.get("TRIPOSG_CODE_PATH")
if local_code_path:
print(f"Attempting to use local code path specified by TRIPOSG_CODE_PATH: {local_code_path}")
# Basic check: does it exist and seem like a git repo (has .git)?
if os.path.isdir(local_code_path) and os.path.isdir(os.path.join(local_code_path, ".git")):
code_source_path = os.path.abspath(local_code_path)
print(f"Using local TripoSG code directory: {code_source_path}")
# You might want to add a check here to verify the branch is correct, e.g.:
# try:
# current_branch = subprocess.run(["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd=code_source_path, check=True, capture_output=True, text=True).stdout.strip()
# if current_branch != BRANCH:
# print(f"Warning: Local repo is on branch '{current_branch}', expected '{BRANCH}'. Attempting checkout...")
# subprocess.run(["git", "checkout", BRANCH], cwd=code_source_path, check=True)
# except Exception as e:
# print(f"Warning: Could not verify or checkout branch '{BRANCH}' in {code_source_path}: {e}")
else:
print(f"Warning: TRIPOSG_CODE_PATH '{local_code_path}' not found or not a valid git repository directory. Falling back to cloning.")
# Option 2: Clone from GitHub (if local path not used or invalid)
if not code_source_path:
repo_url_to_clone = f"https://{REPO_GIT_URL}"
github_token = os.environ.get("GITHUB_TOKEN")
if github_token:
print("Using GITHUB_TOKEN for repository cloning.")
repo_url_to_clone = f"https://{github_token}@{REPO_GIT_URL}"
else:
print("No GITHUB_TOKEN found. Using public HTTPS for cloning.")
repo_target_dir = os.path.abspath(DEFAULT_REPO_DIR)
if not os.path.exists(repo_target_dir):
print(f"Cloning TripoSG repository ({BRANCH} branch) into {repo_target_dir}...")
try:
subprocess.run(["git", "clone", "--branch", BRANCH, "--depth", "1", repo_url_to_clone, repo_target_dir], check=True)
code_source_path = repo_target_dir
print("Repository cloned successfully.")
except subprocess.CalledProcessError as e:
print(f"Error cloning repository: {e}")
print("Please ensure the URL is correct, the branch '{BRANCH}' exists, and you have access rights (or provide a GITHUB_TOKEN).")
sys.exit(1)
except Exception as e:
print(f"An unexpected error occurred during cloning: {e}")
sys.exit(1)
else:
print(f"Directory {repo_target_dir} already exists. Assuming it contains the correct code/branch.")
# Optional: Add checks here like git pull or verifying the branch
code_source_path = repo_target_dir
if not code_source_path:
print("Error: Could not determine TripoSG code source path.")
sys.exit(1)
# Add repo to Python path
sys.path.insert(0, code_source_path) # Use the determined absolute path
print(f"Added {code_source_path} to sys.path")
# --- End Repo Setup ---
# --- ZeroGPU Setup ---
DISABLE_ZEROGPU = os.environ.get("DISABLE_ZEROGPU", "false").lower() in ("true", "1", "t")
ENABLE_ZEROGPU = not DISABLE_ZEROGPU
print(f"ZeroGPU Enabled: {ENABLE_ZEROGPU}")
# --- End ZeroGPU Setup ---
if ENABLE_ZEROGPU:
import spaces # Import spaces for ZeroGPU
from PIL import Image
import numpy as np
import torch
from triposg.pipelines.pipeline_triposg_scribble import TripoSGScribblePipeline
import tempfile
# --- Weight Loading Logic ---
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
HfFolder.save_token(HF_TOKEN)
HUGGING_FACE_REPO_ID = "VAST-AI/TripoSG-scribble"
DEFAULT_CACHE_PATH = "./pretrained_weights/TripoSG-scribble"
# Option 1: Use local path if WEIGHTS_PATH env var is set
local_weights_path = os.environ.get("WEIGHTS_PATH")
model_load_path = None
if local_weights_path:
print(f"Attempting to load weights from local path specified by WEIGHTS_PATH: {local_weights_path}")
if os.path.isdir(local_weights_path):
model_load_path = local_weights_path
print(f"Using local weights directory: {model_load_path}")
else:
print(f"Warning: WEIGHTS_PATH '{local_weights_path}' not found or not a directory. Falling back to Hugging Face download.")
# Option 2: Download from Hugging Face (if local path not used or invalid)
if not model_load_path:
hf_token = os.environ.get("HF_TOKEN")
print(f"Attempting to download weights from Hugging Face repo: {HUGGING_FACE_REPO_ID}")
if hf_token:
print("Using Hugging Face token for download.")
auth_token = hf_token
else:
print("No Hugging Face token found. Attempting public download.")
auth_token = None
try:
model_load_path = snapshot_download(
repo_id=HUGGING_FACE_REPO_ID,
local_dir=DEFAULT_CACHE_PATH,
local_dir_use_symlinks=False, # Recommended for Spaces
token=auth_token,
# revision="main" # Specify branch/commit if needed
)
print(f"Weights downloaded/cached to: {model_load_path}")
except Exception as e:
print(f"Error downloading weights from Hugging Face: {e}")
print("Please ensure the repository exists and is accessible, or provide a valid WEIGHTS_PATH.")
sys.exit(1) # Exit if weights cannot be loaded
# Load the pipeline using the determined path
print(f"Loading pipeline from: {model_load_path}")
pipe = TripoSGScribblePipeline.from_pretrained(model_load_path)
pipe.to(dtype=torch.float16, device="cuda")
print("Pipeline loaded.")
# --- End Weight Loading Logic ---
# Create a white background image and a transparent layer for drawing
canvas_width, canvas_height = 512, 512
initial_background = Image.new("RGB", (canvas_width, canvas_height), color="white")
initial_layer = Image.new("RGBA", (canvas_width, canvas_height), color=(0, 0, 0, 0)) # Transparent layer
# Prepare the initial value dictionary for ImageEditor
initial_value = {
"background": initial_background,
"layers": [initial_layer], # Add the transparent layer
"composite": None
}
# --- ZeroGPU Setup ---
# ... existing ZeroGPU setup ...
MAX_SEED = np.iinfo(np.int32).max
def get_random_seed():
return random.randint(0, MAX_SEED)
# Apply decorator conditionally
@spaces.GPU(duration=120) if ENABLE_ZEROGPU else lambda func: func
def generate_3d(scribble_image_dict, prompt, scribble_confidence, seed): # Added seed parameter back
print("Generating 3D model...")
# Extract the composite image from the ImageEditor dictionary
if scribble_image_dict is None or scribble_image_dict.get("composite") is None:
print("No scribble image provided.")
return None # Return None if no image is provided
# --- Seed Handling ---
current_seed = int(seed)
print(f"Using seed: {current_seed}")
# --- End Seed Handling ---
# Get the composite image which includes the drawing
# The composite might be RGBA if a layer was involved, ensure RGB for processing
image = Image.fromarray(scribble_image_dict["composite"]).convert("RGB")
# Preprocess the image: invert colors (black on white -> white on black)
image_np = np.array(image)
processed_image_np = 255 - image_np
processed_image = Image.fromarray(processed_image_np)
print("Image preprocessed.")
# Define fixed parameters
attn_scale_text = 1.0 # As per the example run.py
# Set the generator with the provided seed
generator = torch.Generator(device='cuda').manual_seed(current_seed)
# Run the pipeline
print("Running pipeline...")
out = pipe(
processed_image,
prompt=prompt,
num_tokens=512,
guidance_scale=0,
num_inference_steps=16,
attention_kwargs={
"cross_attention_scale": attn_scale_text,
"cross_attention_2_scale": scribble_confidence
},
generator=generator,
use_flash_decoder=False,
dense_octree_depth=8,
hierarchical_octree_depth=8
)
print("Pipeline finished.")
# Save the output mesh to a temporary file
if out.meshes and len(out.meshes) > 0:
# Create a temporary file with .glb extension
with tempfile.NamedTemporaryFile(suffix=".glb", delete=False) as tmpfile:
output_path = tmpfile.name
out.meshes[0].export(output_path)
print(f"Mesh saved to temporary file: {output_path}")
return output_path
else:
print("Pipeline did not generate any meshes.")
return None
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Scribble + Text to 3D Model Generator (TripoSG)")
gr.Markdown("Draw a scribble (black on white canvas), enter a text prompt, adjust confidence, set a seed, and generate a 3D model.") # Updated guidance
with gr.Row():
with gr.Column(scale=1):
image_input = gr.ImageEditor(
label="Scribble Input (Draw Black on White)",
value=initial_value,
image_mode="RGB",
brush=gr.Brush(default_color="#000000", color_mode="fixed", default_size=5), # Fixed small brush size
interactive=True,
eraser=gr.Brush(default_color="#FFFFFF", color_mode="fixed", default_size=20) # Fixed small eraser size
)
prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., a cute cat wearing a hat")
confidence_input = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Scribble Confidence (attn_scale_image)")
seed_input = gr.Number(label="Seed", value=0, precision=0) # Added Seed input back
with gr.Row():
submit_button = gr.Button("Generate 3D Model", variant="primary", scale=1)
lucky_button = gr.Button("I'm Feeling Lucky", scale=1)
with gr.Column(scale=1):
model_output = gr.Model3D(label="Generated 3D Model", interactive=False)
# Define the inputs for the main generation function
gen_inputs = [image_input, prompt_input, confidence_input, seed_input]
submit_button.click(
fn=generate_3d,
inputs=gen_inputs, # Include seed_input
outputs=model_output
)
# Define inputs for the lucky button (same as main button for the final call)
lucky_gen_inputs = [image_input, prompt_input, confidence_input, seed_input]
lucky_button.click(
fn=get_random_seed, # First, get a random seed
inputs=[],
outputs=[seed_input] # Update the seed input field
).then(
fn=generate_3d, # Then, generate the model
inputs=lucky_gen_inputs, # Use the updated seed from the input field
outputs=model_output
)
# Launch with queue enabled if using ZeroGPU
print("Launching Gradio interface...")
demo.launch(share=False, server_name="0.0.0.0")
print("Gradio interface launched.")