Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
import sys | |
import subprocess | |
from huggingface_hub import snapshot_download, HfFolder | |
import random # Import random for seed generation | |
# --- Repo Setup --- | |
DEFAULT_REPO_DIR = "./TripoSG-repo" # Directory to clone into if not using local path | |
REPO_GIT_URL = "github.com/VAST-AI-Research/TripoSG.git" # Base URL without schema/token | |
BRANCH = "scribble" | |
code_source_path = None | |
# Option 1: Use local path if TRIPOSG_CODE_PATH env var is set | |
local_code_path = os.environ.get("TRIPOSG_CODE_PATH") | |
if local_code_path: | |
print(f"Attempting to use local code path specified by TRIPOSG_CODE_PATH: {local_code_path}") | |
# Basic check: does it exist and seem like a git repo (has .git)? | |
if os.path.isdir(local_code_path) and os.path.isdir(os.path.join(local_code_path, ".git")): | |
code_source_path = os.path.abspath(local_code_path) | |
print(f"Using local TripoSG code directory: {code_source_path}") | |
# You might want to add a check here to verify the branch is correct, e.g.: | |
# try: | |
# current_branch = subprocess.run(["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd=code_source_path, check=True, capture_output=True, text=True).stdout.strip() | |
# if current_branch != BRANCH: | |
# print(f"Warning: Local repo is on branch '{current_branch}', expected '{BRANCH}'. Attempting checkout...") | |
# subprocess.run(["git", "checkout", BRANCH], cwd=code_source_path, check=True) | |
# except Exception as e: | |
# print(f"Warning: Could not verify or checkout branch '{BRANCH}' in {code_source_path}: {e}") | |
else: | |
print(f"Warning: TRIPOSG_CODE_PATH '{local_code_path}' not found or not a valid git repository directory. Falling back to cloning.") | |
# Option 2: Clone from GitHub (if local path not used or invalid) | |
if not code_source_path: | |
repo_url_to_clone = f"https://{REPO_GIT_URL}" | |
github_token = os.environ.get("GITHUB_TOKEN") | |
if github_token: | |
print("Using GITHUB_TOKEN for repository cloning.") | |
repo_url_to_clone = f"https://{github_token}@{REPO_GIT_URL}" | |
else: | |
print("No GITHUB_TOKEN found. Using public HTTPS for cloning.") | |
repo_target_dir = os.path.abspath(DEFAULT_REPO_DIR) | |
if not os.path.exists(repo_target_dir): | |
print(f"Cloning TripoSG repository ({BRANCH} branch) into {repo_target_dir}...") | |
try: | |
subprocess.run(["git", "clone", "--branch", BRANCH, "--depth", "1", repo_url_to_clone, repo_target_dir], check=True) | |
code_source_path = repo_target_dir | |
print("Repository cloned successfully.") | |
except subprocess.CalledProcessError as e: | |
print(f"Error cloning repository: {e}") | |
print("Please ensure the URL is correct, the branch '{BRANCH}' exists, and you have access rights (or provide a GITHUB_TOKEN).") | |
sys.exit(1) | |
except Exception as e: | |
print(f"An unexpected error occurred during cloning: {e}") | |
sys.exit(1) | |
else: | |
print(f"Directory {repo_target_dir} already exists. Assuming it contains the correct code/branch.") | |
# Optional: Add checks here like git pull or verifying the branch | |
code_source_path = repo_target_dir | |
if not code_source_path: | |
print("Error: Could not determine TripoSG code source path.") | |
sys.exit(1) | |
# Add repo to Python path | |
sys.path.insert(0, code_source_path) # Use the determined absolute path | |
print(f"Added {code_source_path} to sys.path") | |
# --- End Repo Setup --- | |
# --- ZeroGPU Setup --- | |
DISABLE_ZEROGPU = os.environ.get("DISABLE_ZEROGPU", "false").lower() in ("true", "1", "t") | |
ENABLE_ZEROGPU = not DISABLE_ZEROGPU | |
print(f"ZeroGPU Enabled: {ENABLE_ZEROGPU}") | |
# --- End ZeroGPU Setup --- | |
if ENABLE_ZEROGPU: | |
import spaces # Import spaces for ZeroGPU | |
from PIL import Image | |
import numpy as np | |
import torch | |
from triposg.pipelines.pipeline_triposg_scribble import TripoSGScribblePipeline | |
import tempfile | |
# --- Weight Loading Logic --- | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
if HF_TOKEN: | |
HfFolder.save_token(HF_TOKEN) | |
HUGGING_FACE_REPO_ID = "VAST-AI/TripoSG-scribble" | |
DEFAULT_CACHE_PATH = "./pretrained_weights/TripoSG-scribble" | |
# Option 1: Use local path if WEIGHTS_PATH env var is set | |
local_weights_path = os.environ.get("WEIGHTS_PATH") | |
model_load_path = None | |
if local_weights_path: | |
print(f"Attempting to load weights from local path specified by WEIGHTS_PATH: {local_weights_path}") | |
if os.path.isdir(local_weights_path): | |
model_load_path = local_weights_path | |
print(f"Using local weights directory: {model_load_path}") | |
else: | |
print(f"Warning: WEIGHTS_PATH '{local_weights_path}' not found or not a directory. Falling back to Hugging Face download.") | |
# Option 2: Download from Hugging Face (if local path not used or invalid) | |
if not model_load_path: | |
hf_token = os.environ.get("HF_TOKEN") | |
print(f"Attempting to download weights from Hugging Face repo: {HUGGING_FACE_REPO_ID}") | |
if hf_token: | |
print("Using Hugging Face token for download.") | |
auth_token = hf_token | |
else: | |
print("No Hugging Face token found. Attempting public download.") | |
auth_token = None | |
try: | |
model_load_path = snapshot_download( | |
repo_id=HUGGING_FACE_REPO_ID, | |
local_dir=DEFAULT_CACHE_PATH, | |
local_dir_use_symlinks=False, # Recommended for Spaces | |
token=auth_token, | |
# revision="main" # Specify branch/commit if needed | |
) | |
print(f"Weights downloaded/cached to: {model_load_path}") | |
except Exception as e: | |
print(f"Error downloading weights from Hugging Face: {e}") | |
print("Please ensure the repository exists and is accessible, or provide a valid WEIGHTS_PATH.") | |
sys.exit(1) # Exit if weights cannot be loaded | |
# Load the pipeline using the determined path | |
print(f"Loading pipeline from: {model_load_path}") | |
pipe = TripoSGScribblePipeline.from_pretrained(model_load_path) | |
pipe.to(dtype=torch.float16, device="cuda") | |
print("Pipeline loaded.") | |
# --- End Weight Loading Logic --- | |
# Create a white background image and a transparent layer for drawing | |
canvas_width, canvas_height = 512, 512 | |
initial_background = Image.new("RGB", (canvas_width, canvas_height), color="white") | |
initial_layer = Image.new("RGBA", (canvas_width, canvas_height), color=(0, 0, 0, 0)) # Transparent layer | |
# Prepare the initial value dictionary for ImageEditor | |
initial_value = { | |
"background": initial_background, | |
"layers": [initial_layer], # Add the transparent layer | |
"composite": None | |
} | |
# --- ZeroGPU Setup --- | |
# ... existing ZeroGPU setup ... | |
MAX_SEED = np.iinfo(np.int32).max | |
def get_random_seed(): | |
return random.randint(0, MAX_SEED) | |
# Apply decorator conditionally | |
def generate_3d(scribble_image_dict, prompt, scribble_confidence, seed): # Added seed parameter back | |
print("Generating 3D model...") | |
# Extract the composite image from the ImageEditor dictionary | |
if scribble_image_dict is None or scribble_image_dict.get("composite") is None: | |
print("No scribble image provided.") | |
return None # Return None if no image is provided | |
# --- Seed Handling --- | |
current_seed = int(seed) | |
print(f"Using seed: {current_seed}") | |
# --- End Seed Handling --- | |
# Get the composite image which includes the drawing | |
# The composite might be RGBA if a layer was involved, ensure RGB for processing | |
image = Image.fromarray(scribble_image_dict["composite"]).convert("RGB") | |
# Preprocess the image: invert colors (black on white -> white on black) | |
image_np = np.array(image) | |
processed_image_np = 255 - image_np | |
processed_image = Image.fromarray(processed_image_np) | |
print("Image preprocessed.") | |
# Define fixed parameters | |
attn_scale_text = 1.0 # As per the example run.py | |
# Set the generator with the provided seed | |
generator = torch.Generator(device='cuda').manual_seed(current_seed) | |
# Run the pipeline | |
print("Running pipeline...") | |
out = pipe( | |
processed_image, | |
prompt=prompt, | |
num_tokens=512, | |
guidance_scale=0, | |
num_inference_steps=16, | |
attention_kwargs={ | |
"cross_attention_scale": attn_scale_text, | |
"cross_attention_2_scale": scribble_confidence | |
}, | |
generator=generator, | |
use_flash_decoder=False, | |
dense_octree_depth=8, | |
hierarchical_octree_depth=8 | |
) | |
print("Pipeline finished.") | |
# Save the output mesh to a temporary file | |
if out.meshes and len(out.meshes) > 0: | |
# Create a temporary file with .glb extension | |
with tempfile.NamedTemporaryFile(suffix=".glb", delete=False) as tmpfile: | |
output_path = tmpfile.name | |
out.meshes[0].export(output_path) | |
print(f"Mesh saved to temporary file: {output_path}") | |
return output_path | |
else: | |
print("Pipeline did not generate any meshes.") | |
return None | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Scribble + Text to 3D Model Generator (TripoSG)") | |
gr.Markdown("Draw a scribble (black on white canvas), enter a text prompt, adjust confidence, set a seed, and generate a 3D model.") # Updated guidance | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.ImageEditor( | |
label="Scribble Input (Draw Black on White)", | |
value=initial_value, | |
image_mode="RGB", | |
brush=gr.Brush(default_color="#000000", color_mode="fixed", default_size=5), # Fixed small brush size | |
interactive=True, | |
eraser=gr.Brush(default_color="#FFFFFF", color_mode="fixed", default_size=20) # Fixed small eraser size | |
) | |
prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., a cute cat wearing a hat") | |
confidence_input = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Scribble Confidence (attn_scale_image)") | |
seed_input = gr.Number(label="Seed", value=0, precision=0) # Added Seed input back | |
with gr.Row(): | |
submit_button = gr.Button("Generate 3D Model", variant="primary", scale=1) | |
lucky_button = gr.Button("I'm Feeling Lucky", scale=1) | |
with gr.Column(scale=1): | |
model_output = gr.Model3D(label="Generated 3D Model", interactive=False) | |
# Define the inputs for the main generation function | |
gen_inputs = [image_input, prompt_input, confidence_input, seed_input] | |
submit_button.click( | |
fn=generate_3d, | |
inputs=gen_inputs, # Include seed_input | |
outputs=model_output | |
) | |
# Define inputs for the lucky button (same as main button for the final call) | |
lucky_gen_inputs = [image_input, prompt_input, confidence_input, seed_input] | |
lucky_button.click( | |
fn=get_random_seed, # First, get a random seed | |
inputs=[], | |
outputs=[seed_input] # Update the seed input field | |
).then( | |
fn=generate_3d, # Then, generate the model | |
inputs=lucky_gen_inputs, # Use the updated seed from the input field | |
outputs=model_output | |
) | |
# Launch with queue enabled if using ZeroGPU | |
print("Launching Gradio interface...") | |
demo.launch(share=False, server_name="0.0.0.0") | |
print("Gradio interface launched.") | |