File size: 11,410 Bytes
c60b074
2c25d73
 
 
 
 
c60b074
2c25d73
 
 
 
c60b074
2c25d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c038d42
 
2c25d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import gradio as gr
import os
import sys
import subprocess
from huggingface_hub import snapshot_download, HfFolder
import random # Import random for seed generation

# --- Repo Setup --- 
DEFAULT_REPO_DIR = "./TripoSG-repo" # Directory to clone into if not using local path
REPO_GIT_URL = "github.com/VAST-AI-Research/TripoSG.git" # Base URL without schema/token
BRANCH = "scribble"

code_source_path = None

# Option 1: Use local path if TRIPOSG_CODE_PATH env var is set
local_code_path = os.environ.get("TRIPOSG_CODE_PATH")
if local_code_path:
    print(f"Attempting to use local code path specified by TRIPOSG_CODE_PATH: {local_code_path}")
    # Basic check: does it exist and seem like a git repo (has .git)?
    if os.path.isdir(local_code_path) and os.path.isdir(os.path.join(local_code_path, ".git")):
        code_source_path = os.path.abspath(local_code_path)
        print(f"Using local TripoSG code directory: {code_source_path}")
        # You might want to add a check here to verify the branch is correct, e.g.:
        # try:
        #     current_branch = subprocess.run(["git", "rev-parse", "--abbrev-ref", "HEAD"], cwd=code_source_path, check=True, capture_output=True, text=True).stdout.strip()
        #     if current_branch != BRANCH:
        #         print(f"Warning: Local repo is on branch '{current_branch}', expected '{BRANCH}'. Attempting checkout...")
        #         subprocess.run(["git", "checkout", BRANCH], cwd=code_source_path, check=True)
        # except Exception as e:
        #     print(f"Warning: Could not verify or checkout branch '{BRANCH}' in {code_source_path}: {e}")
    else:
        print(f"Warning: TRIPOSG_CODE_PATH '{local_code_path}' not found or not a valid git repository directory. Falling back to cloning.")

# Option 2: Clone from GitHub (if local path not used or invalid)
if not code_source_path:
    repo_url_to_clone = f"https://{REPO_GIT_URL}"
    github_token = os.environ.get("GITHUB_TOKEN")
    if github_token:
        print("Using GITHUB_TOKEN for repository cloning.")
        repo_url_to_clone = f"https://{github_token}@{REPO_GIT_URL}"
    else:
        print("No GITHUB_TOKEN found. Using public HTTPS for cloning.")

    repo_target_dir = os.path.abspath(DEFAULT_REPO_DIR)
    if not os.path.exists(repo_target_dir):
        print(f"Cloning TripoSG repository ({BRANCH} branch) into {repo_target_dir}...")
        try:
            subprocess.run(["git", "clone", "--branch", BRANCH, "--depth", "1", repo_url_to_clone, repo_target_dir], check=True)
            code_source_path = repo_target_dir
            print("Repository cloned successfully.")
        except subprocess.CalledProcessError as e:
            print(f"Error cloning repository: {e}")
            print("Please ensure the URL is correct, the branch '{BRANCH}' exists, and you have access rights (or provide a GITHUB_TOKEN).")
            sys.exit(1)
        except Exception as e:
            print(f"An unexpected error occurred during cloning: {e}")
            sys.exit(1)
    else:
        print(f"Directory {repo_target_dir} already exists. Assuming it contains the correct code/branch.")
        # Optional: Add checks here like git pull or verifying the branch
        code_source_path = repo_target_dir

if not code_source_path:
    print("Error: Could not determine TripoSG code source path.")
    sys.exit(1)

# Add repo to Python path
sys.path.insert(0, code_source_path) # Use the determined absolute path
print(f"Added {code_source_path} to sys.path")
# --- End Repo Setup ---

# --- ZeroGPU Setup ---
DISABLE_ZEROGPU = os.environ.get("DISABLE_ZEROGPU", "false").lower() in ("true", "1", "t")
ENABLE_ZEROGPU = not DISABLE_ZEROGPU
print(f"ZeroGPU Enabled: {ENABLE_ZEROGPU}")
# --- End ZeroGPU Setup ---

if ENABLE_ZEROGPU:
    import spaces # Import spaces for ZeroGPU
from PIL import Image
import numpy as np
import torch
from triposg.pipelines.pipeline_triposg_scribble import TripoSGScribblePipeline
import tempfile

# --- Weight Loading Logic ---
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
    HfFolder.save_token(HF_TOKEN)
HUGGING_FACE_REPO_ID = "VAST-AI/TripoSG-scribble"
DEFAULT_CACHE_PATH = "./pretrained_weights/TripoSG-scribble"

# Option 1: Use local path if WEIGHTS_PATH env var is set
local_weights_path = os.environ.get("WEIGHTS_PATH")
model_load_path = None

if local_weights_path:
    print(f"Attempting to load weights from local path specified by WEIGHTS_PATH: {local_weights_path}")
    if os.path.isdir(local_weights_path):
        model_load_path = local_weights_path
        print(f"Using local weights directory: {model_load_path}")
    else:
        print(f"Warning: WEIGHTS_PATH '{local_weights_path}' not found or not a directory. Falling back to Hugging Face download.")

# Option 2: Download from Hugging Face (if local path not used or invalid)
if not model_load_path:
    hf_token = os.environ.get("HF_TOKEN")
    print(f"Attempting to download weights from Hugging Face repo: {HUGGING_FACE_REPO_ID}")
    if hf_token:
        print("Using Hugging Face token for download.")
        auth_token = hf_token
    else:
        print("No Hugging Face token found. Attempting public download.")
        auth_token = None
    try:
        model_load_path = snapshot_download(
            repo_id=HUGGING_FACE_REPO_ID,
            local_dir=DEFAULT_CACHE_PATH,
            local_dir_use_symlinks=False, # Recommended for Spaces
            token=auth_token,
            # revision="main" # Specify branch/commit if needed
        )
        print(f"Weights downloaded/cached to: {model_load_path}")
    except Exception as e:
        print(f"Error downloading weights from Hugging Face: {e}")
        print("Please ensure the repository exists and is accessible, or provide a valid WEIGHTS_PATH.")
        sys.exit(1) # Exit if weights cannot be loaded

# Load the pipeline using the determined path
print(f"Loading pipeline from: {model_load_path}")
pipe = TripoSGScribblePipeline.from_pretrained(model_load_path)
pipe.to(dtype=torch.float16, device="cuda")
print("Pipeline loaded.")
# --- End Weight Loading Logic ---

# Create a white background image and a transparent layer for drawing
canvas_width, canvas_height = 512, 512
initial_background = Image.new("RGB", (canvas_width, canvas_height), color="white")
initial_layer = Image.new("RGBA", (canvas_width, canvas_height), color=(0, 0, 0, 0)) # Transparent layer
# Prepare the initial value dictionary for ImageEditor
initial_value = {
    "background": initial_background,
    "layers": [initial_layer], # Add the transparent layer
    "composite": None
}

# --- ZeroGPU Setup ---
# ... existing ZeroGPU setup ...

MAX_SEED = np.iinfo(np.int32).max

def get_random_seed():
    return random.randint(0, MAX_SEED)

# Apply decorator conditionally
@spaces.GPU(duration=120) if ENABLE_ZEROGPU else lambda func: func
def generate_3d(scribble_image_dict, prompt, scribble_confidence, seed): # Added seed parameter back
    print("Generating 3D model...")
    # Extract the composite image from the ImageEditor dictionary
    if scribble_image_dict is None or scribble_image_dict.get("composite") is None:
        print("No scribble image provided.")
        return None # Return None if no image is provided

    # --- Seed Handling ---
    current_seed = int(seed)
    print(f"Using seed: {current_seed}")
    # --- End Seed Handling ---

    # Get the composite image which includes the drawing
    # The composite might be RGBA if a layer was involved, ensure RGB for processing
    image = Image.fromarray(scribble_image_dict["composite"]).convert("RGB") 

    # Preprocess the image: invert colors (black on white -> white on black)
    image_np = np.array(image)
    processed_image_np = 255 - image_np
    processed_image = Image.fromarray(processed_image_np)
    print("Image preprocessed.")

    # Define fixed parameters
    attn_scale_text = 1.0 # As per the example run.py

    # Set the generator with the provided seed
    generator = torch.Generator(device='cuda').manual_seed(current_seed)

    # Run the pipeline
    print("Running pipeline...")
    out = pipe(
        processed_image,
        prompt=prompt,
        num_tokens=512,
        guidance_scale=0,
        num_inference_steps=16,
        attention_kwargs={
            "cross_attention_scale": attn_scale_text,
            "cross_attention_2_scale": scribble_confidence
        },
        generator=generator,
        use_flash_decoder=False,
        dense_octree_depth=8,
        hierarchical_octree_depth=8
    )
    print("Pipeline finished.")

    # Save the output mesh to a temporary file
    if out.meshes and len(out.meshes) > 0:
        # Create a temporary file with .glb extension
        with tempfile.NamedTemporaryFile(suffix=".glb", delete=False) as tmpfile:
            output_path = tmpfile.name
        out.meshes[0].export(output_path)
        print(f"Mesh saved to temporary file: {output_path}")
        return output_path
    else:
        print("Pipeline did not generate any meshes.")
        return None

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Scribble + Text to 3D Model Generator (TripoSG)")
    gr.Markdown("Draw a scribble (black on white canvas), enter a text prompt, adjust confidence, set a seed, and generate a 3D model.") # Updated guidance
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.ImageEditor(
                label="Scribble Input (Draw Black on White)",
                value=initial_value,
                image_mode="RGB",
                brush=gr.Brush(default_color="#000000", color_mode="fixed", default_size=5), # Fixed small brush size
                interactive=True,
                eraser=gr.Brush(default_color="#FFFFFF", color_mode="fixed", default_size=20) # Fixed small eraser size
            )
            prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., a cute cat wearing a hat")
            confidence_input = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Scribble Confidence (attn_scale_image)")
            seed_input = gr.Number(label="Seed", value=0, precision=0) # Added Seed input back
            with gr.Row():
                submit_button = gr.Button("Generate 3D Model", variant="primary", scale=1)
                lucky_button = gr.Button("I'm Feeling Lucky", scale=1)
        with gr.Column(scale=1):
            model_output = gr.Model3D(label="Generated 3D Model", interactive=False)

    # Define the inputs for the main generation function
    gen_inputs = [image_input, prompt_input, confidence_input, seed_input]

    submit_button.click(
        fn=generate_3d,
        inputs=gen_inputs, # Include seed_input
        outputs=model_output
    )

    # Define inputs for the lucky button (same as main button for the final call)
    lucky_gen_inputs = [image_input, prompt_input, confidence_input, seed_input]

    lucky_button.click(
        fn=get_random_seed, # First, get a random seed
        inputs=[],
        outputs=[seed_input] # Update the seed input field
    ).then(
        fn=generate_3d, # Then, generate the model
        inputs=lucky_gen_inputs, # Use the updated seed from the input field
        outputs=model_output
    )

# Launch with queue enabled if using ZeroGPU
print("Launching Gradio interface...")
demo.launch(share=False, server_name="0.0.0.0")
print("Gradio interface launched.")