DualTextOCRFusion / ocr_cpu.py
UniquePratham's picture
Update ocr_cpu.py
afedbd6 verified
raw
history blame
4.04 kB
# ocr_cpu.py
import os
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
import re
# -----------------------------
# OCR Model Initialization
# -----------------------------
# Load OCR model and tokenizer
ocr_model_name = "srimanth-d/GOT_CPU" # Using GOT model on CPU
ocr_tokenizer = AutoTokenizer.from_pretrained(
ocr_model_name, trust_remote_code=True, return_tensors='pt'
)
# Load the OCR model
ocr_model = AutoModel.from_pretrained(
ocr_model_name,
trust_remote_code=True,
low_cpu_mem_usage=True,
use_safetensors=True,
pad_token_id=ocr_tokenizer.eos_token_id,
)
# Ensure the OCR model is in evaluation mode and loaded on CPU
ocr_device = torch.device("cpu")
ocr_model = ocr_model.eval().to(ocr_device)
# -----------------------------
# Text Cleaning Model Initialization
# -----------------------------
# Load Text Cleaning model and tokenizer
clean_model_name = "gpt2" # You can choose a different model if preferred
clean_tokenizer = AutoTokenizer.from_pretrained(clean_model_name)
clean_model = AutoModelForCausalLM.from_pretrained(clean_model_name)
# Ensure the Text Cleaning model is in evaluation mode and loaded on CPU
clean_device = torch.device("cpu")
clean_model = clean_model.eval().to(clean_device)
# -----------------------------
# OCR Function
# -----------------------------
def extract_text_got(uploaded_file):
"""
Use GOT-OCR2.0 model to extract text from the uploaded image.
"""
temp_file_path = 'temp_image.jpg'
try:
# Save the uploaded file temporarily
with open(temp_file_path, 'wb') as temp_file:
temp_file.write(uploaded_file.read())
print(f"Processing image from path: {temp_file_path}")
ocr_types = ['ocr', 'format']
results = []
# Run OCR on the image
for ocr_type in ocr_types:
with torch.no_grad():
print(f"Running OCR with type: {ocr_type}")
outputs = ocr_model.chat(ocr_tokenizer, temp_file_path, ocr_type=ocr_type)
if isinstance(outputs, list) and outputs[0].strip():
return outputs[0].strip() # Return the result if successful
results.append(outputs[0].strip() if outputs else "No result")
# Combine results or return no text found message
return results[0] if results else "No text extracted."
except Exception as e:
return f"Error during text extraction: {str(e)}"
finally:
# Clean up temporary file
if os.path.exists(temp_file_path):
os.remove(temp_file_path)
print(f"Temporary file {temp_file_path} removed.")
# -----------------------------
# Text Cleaning Function
# -----------------------------
def clean_text_with_ai(extracted_text):
"""
Cleans extracted text by leveraging a language model to intelligently remove extra spaces and correct formatting.
"""
try:
# Define the prompt for cleaning
prompt = f"Please clean the following text by removing extra spaces and ensuring proper formatting:\n\n{extracted_text}\n\nCleaned Text:"
# Tokenize the input prompt
inputs = clean_tokenizer.encode(prompt, return_tensors="pt").to(clean_device)
# Generate the cleaned text
with torch.no_grad():
outputs = clean_model.generate(
inputs,
max_length=500, # Adjust as needed
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=clean_tokenizer.eos_token_id,
pad_token_id=clean_tokenizer.eos_token_id
)
# Decode the generated text
cleaned_text = clean_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the cleaned text after the prompt
cleaned_text = cleaned_text.split("Cleaned Text:")[-1].strip()
return cleaned_text
except Exception as e:
return f"Error during AI text cleaning: {str(e)}"