# ocr_cpu.py import os import torch from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM import re # ----------------------------- # OCR Model Initialization # ----------------------------- # Load OCR model and tokenizer ocr_model_name = "srimanth-d/GOT_CPU" # Using GOT model on CPU ocr_tokenizer = AutoTokenizer.from_pretrained( ocr_model_name, trust_remote_code=True, return_tensors='pt' ) # Load the OCR model ocr_model = AutoModel.from_pretrained( ocr_model_name, trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=ocr_tokenizer.eos_token_id, ) # Ensure the OCR model is in evaluation mode and loaded on CPU ocr_device = torch.device("cpu") ocr_model = ocr_model.eval().to(ocr_device) # ----------------------------- # Text Cleaning Model Initialization # ----------------------------- # Load Text Cleaning model and tokenizer clean_model_name = "gpt2" # You can choose a different model if preferred clean_tokenizer = AutoTokenizer.from_pretrained(clean_model_name) clean_model = AutoModelForCausalLM.from_pretrained(clean_model_name) # Ensure the Text Cleaning model is in evaluation mode and loaded on CPU clean_device = torch.device("cpu") clean_model = clean_model.eval().to(clean_device) # ----------------------------- # OCR Function # ----------------------------- def extract_text_got(uploaded_file): """ Use GOT-OCR2.0 model to extract text from the uploaded image. """ temp_file_path = 'temp_image.jpg' try: # Save the uploaded file temporarily with open(temp_file_path, 'wb') as temp_file: temp_file.write(uploaded_file.read()) print(f"Processing image from path: {temp_file_path}") ocr_types = ['ocr', 'format'] results = [] # Run OCR on the image for ocr_type in ocr_types: with torch.no_grad(): print(f"Running OCR with type: {ocr_type}") outputs = ocr_model.chat(ocr_tokenizer, temp_file_path, ocr_type=ocr_type) if isinstance(outputs, list) and outputs[0].strip(): return outputs[0].strip() # Return the result if successful results.append(outputs[0].strip() if outputs else "No result") # Combine results or return no text found message return results[0] if results else "No text extracted." except Exception as e: return f"Error during text extraction: {str(e)}" finally: # Clean up temporary file if os.path.exists(temp_file_path): os.remove(temp_file_path) print(f"Temporary file {temp_file_path} removed.") # ----------------------------- # Text Cleaning Function # ----------------------------- def clean_text_with_ai(extracted_text): """ Cleans extracted text by leveraging a language model to intelligently remove extra spaces and correct formatting. """ try: # Define the prompt for cleaning prompt = f"Please clean the following text by removing extra spaces and ensuring proper formatting:\n\n{extracted_text}\n\nCleaned Text:" # Tokenize the input prompt inputs = clean_tokenizer.encode(prompt, return_tensors="pt").to(clean_device) # Generate the cleaned text with torch.no_grad(): outputs = clean_model.generate( inputs, max_length=500, # Adjust as needed temperature=0.7, top_p=0.9, do_sample=True, eos_token_id=clean_tokenizer.eos_token_id, pad_token_id=clean_tokenizer.eos_token_id ) # Decode the generated text cleaned_text = clean_tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the cleaned text after the prompt cleaned_text = cleaned_text.split("Cleaned Text:")[-1].strip() return cleaned_text except Exception as e: return f"Error during AI text cleaning: {str(e)}"