File size: 5,443 Bytes
1bcaf5a
76a3bfd
 
 
 
 
3a8cf08
76a3bfd
 
 
 
 
 
0dda3bd
84010af
76a3bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8cf08
76a3bfd
 
3a8cf08
76a3bfd
e38dcf1
76a3bfd
 
 
 
 
e38dcf1
 
 
 
 
 
 
 
 
 
 
 
 
 
76a3bfd
3a8cf08
 
 
 
 
 
 
dd7ade0
 
3a8cf08
76a3bfd
 
 
 
 
fbd3675
0637d24
dbc1b2d
 
6992c96
f5894fd
dbc1b2d
cd73003
466c028
cd73003
76a3bfd
cd73003
466c028
545a4a4
76a3bfd
 
3a8cf08
 
 
1bcaf5a
 
 
3a8cf08
 
 
 
 
 
 
 
 
 
 
 
 
 
1bcaf5a
 
cd73003
3a8cf08
 
76a3bfd
 
 
 
 
6992c96
76a3bfd
1301ce8
dd7ade0
 
 
c048789
 
dd7ade0
76a3bfd
1301ce8
abe371d
 
 
 
 
1bcaf5a
 
84010af
2db9522
84010af
 
 
3a8cf08
84010af
3a8cf08
abe371d
76a3bfd
 
24c2d4a
 
 
 
 
 
 
76a3bfd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import json
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datasets import load_dataset

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    TASK_TEXT,
    SUBMIT_TEMPLATE,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_RESULTS_PATH, GOLDEN_REPO, REPO_ID, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.evaluation import evaluate

import pdb

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
# try:
#     print(EVAL_REQUESTS_PATH)
#     snapshot_download(
#         repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()
# try:
#     print(EVAL_RESULTS_PATH)
#     snapshot_download(
#         repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
#     )
# except Exception:
#     restart_space()

try:
    golden = load_dataset(GOLDEN_REPO, token=TOKEN)
    print(golden)
except Exception:
    restart_space()

task = ['Overall', 'Crossword', 'Acrostic', 'Logic_Puzzle', 'Cryptogram', 'Sudoku', 'Drop_Quote']
leaderboard_dict = {}
for t in task:
    leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, task=t)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    # pdb.set_trace()
    def highlight_max_bold(s):
        return ['font-weight: bold' if v == s.max() and v != s.min() else '' for v in s]
    num_cols = dataframe.select_dtypes(include=['float']).columns
    styler = dataframe.style.format({col: "{:.1f}" for col in num_cols})
    styler = styler.apply(highlight_max_bold, subset=num_cols)
    return gr.components.Dataframe(
        value=styler,
        headers=[c.name for c in fields(AutoEvalColumn)],
        datatype=[c.type for c in fields(AutoEvalColumn)],
        row_count=10,
        interactive=False,
        column_widths=[180, 60, 80, 80, 80, 80, 60],
    )


    
def eval_json(file):
    try:
        with open(file.name, 'r', encoding='utf-8') as f:
            data = json.load(f)
            
        tasks = ["crossword", "acrostic", "logic", "cryptogram", "sudoku", "drop"]
        
        eval_dict = {}
        
        for task in tasks:
            data_list = data["results"][task]
            golden_list = golden[task]
            result = evaluate(data_list, golden_list, task)
            eval_dict[task] = result
        
        return json.dumps(eval_dict, indent=4)

        
    except Exception as e:
        return str(e)



demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_id="main-tabs", elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            # leaderboard = init_leaderboard(LEADERBOARD_DF)
            with gr.Tabs():
                for i, t in enumerate(task):
                    with gr.TabItem(t.replace("_", " "), elem_id=f"llm-benchmark-tab-table-{t}", id=i):
                        if TASK_TEXT.get(t, None):
                            gr.Markdown(TASK_TEXT[t], elem_classes="markdown-text")
                        leaderboard = init_leaderboard(leaderboard_dict[t])


        # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")

            gr.Markdown("## Submission Template", elem_classes="markdown-text")
            gr.Markdown("See [submission_template.json](https://github.com/Ultramarine-spec/LR2Bench/blob/main/submission_template.json) for detail. The following is an example for the JSON structure.", elem_classes="markdown-text")
            gr.Markdown(SUBMIT_TEMPLATE, elem_classes="markdown-text", height=250)
            
            file_input = gr.File(label="Upload JSON File", file_types=[".json"], height=150)
            json_output = gr.JSON(label="Your Model Performance")  # 输出 JSON 数据
            submit_button = gr.Button("Submit")
            submit_button.click(fn=eval_json, inputs=file_input, outputs=json_output)


    with gr.Row():
        # gr.Markdown()
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()