Spaces:
Running
Running
Commit
·
3a8cf08
1
Parent(s):
84010af
add
Browse files- app.py +33 -41
- src/about.py +18 -24
- src/envs.py +3 -2
- src/evaluation.py +423 -0
- src/leaderboard/read_evals.py +1 -1
- src/populate.py +2 -2
app.py
CHANGED
@@ -4,6 +4,7 @@ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
from huggingface_hub import snapshot_download
|
|
|
7 |
|
8 |
from src.about import (
|
9 |
CITATION_BUTTON_LABEL,
|
@@ -27,9 +28,10 @@ from src.display.utils import (
|
|
27 |
WeightType,
|
28 |
Precision
|
29 |
)
|
30 |
-
from src.envs import API,
|
31 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
32 |
from src.submission.submit import add_new_eval
|
|
|
33 |
|
34 |
import pdb
|
35 |
|
@@ -52,16 +54,17 @@ def restart_space():
|
|
52 |
# except Exception:
|
53 |
# restart_space()
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
leaderboard_dict = {}
|
57 |
for t in task:
|
58 |
-
leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH,
|
59 |
|
60 |
-
(
|
61 |
-
finished_eval_queue_df,
|
62 |
-
running_eval_queue_df,
|
63 |
-
pending_eval_queue_df,
|
64 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
65 |
|
66 |
def init_leaderboard(dataframe):
|
67 |
if dataframe is None or dataframe.empty:
|
@@ -82,43 +85,31 @@ def init_leaderboard(dataframe):
|
|
82 |
column_widths=[180, 60, 80, 80, 80, 80, 60],
|
83 |
)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
# select_columns=SelectColumns(
|
89 |
-
# default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
90 |
-
# cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
91 |
-
# label="Select Columns to Display:",
|
92 |
-
# ),
|
93 |
-
# # search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
94 |
-
# # hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
95 |
-
# # filter_columns=[
|
96 |
-
# # ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
97 |
-
# # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
98 |
-
# # ColumnFilter(
|
99 |
-
# # AutoEvalColumn.params.name,
|
100 |
-
# # type="slider",
|
101 |
-
# # min=0.01,
|
102 |
-
# # max=150,
|
103 |
-
# # label="Select the number of parameters (B)",
|
104 |
-
# # ),
|
105 |
-
# # ColumnFilter(
|
106 |
-
# # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
107 |
-
# # ),
|
108 |
-
# # ],
|
109 |
-
# # bool_checkboxgroup_label="Hide models",
|
110 |
-
# interactive=False,
|
111 |
-
# )
|
112 |
-
|
113 |
-
def process_json(file):
|
114 |
-
""" 读取用户上传的 JSON 文件并返回解析后的数据 """
|
115 |
try:
|
116 |
with open(file.name, 'r', encoding='utf-8') as f:
|
117 |
data = json.load(f)
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
except Exception as e:
|
120 |
return str(e)
|
121 |
|
|
|
|
|
122 |
demo = gr.Blocks(css=custom_css)
|
123 |
with demo:
|
124 |
gr.HTML(TITLE)
|
@@ -143,12 +134,13 @@ with demo:
|
|
143 |
gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")
|
144 |
|
145 |
gr.Markdown("## Submission Template", elem_classes="markdown-text")
|
|
|
146 |
gr.Markdown(SUBMIT_TEMPLATE, elem_classes="markdown-text", height=250)
|
147 |
|
148 |
file_input = gr.File(label="Upload JSON File", file_types=[".json"], height=150)
|
149 |
-
json_output = gr.JSON(label="
|
150 |
submit_button = gr.Button("Submit")
|
151 |
-
submit_button.click(fn=
|
152 |
|
153 |
|
154 |
with gr.Row():
|
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
from huggingface_hub import snapshot_download
|
7 |
+
from datasets import load_dataset
|
8 |
|
9 |
from src.about import (
|
10 |
CITATION_BUTTON_LABEL,
|
|
|
28 |
WeightType,
|
29 |
Precision
|
30 |
)
|
31 |
+
from src.envs import API, EVAL_RESULTS_PATH, GOLDEN_REPO, REPO_ID, TOKEN
|
32 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
33 |
from src.submission.submit import add_new_eval
|
34 |
+
from src.evaluation import evaluate
|
35 |
|
36 |
import pdb
|
37 |
|
|
|
54 |
# except Exception:
|
55 |
# restart_space()
|
56 |
|
57 |
+
try:
|
58 |
+
golden = load_dataset(GOLDEN_REPO, token=TOKEN)
|
59 |
+
print(golden)
|
60 |
+
except Exception:
|
61 |
+
restart_space()
|
62 |
+
|
63 |
+
task = ['Overall', 'Crossword', 'Acrostic', 'Logic_Puzzle', 'Cryptogram', 'Sudoku', 'Drop_Quote']
|
64 |
leaderboard_dict = {}
|
65 |
for t in task:
|
66 |
+
leaderboard_dict[t] = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, task=t)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def init_leaderboard(dataframe):
|
70 |
if dataframe is None or dataframe.empty:
|
|
|
85 |
column_widths=[180, 60, 80, 80, 80, 80, 60],
|
86 |
)
|
87 |
|
88 |
+
|
89 |
+
|
90 |
+
def eval_json(file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
try:
|
92 |
with open(file.name, 'r', encoding='utf-8') as f:
|
93 |
data = json.load(f)
|
94 |
+
|
95 |
+
tasks = ["crossword", "acrostic", "logic", "cryptogram", "sudoku", "drop"]
|
96 |
+
|
97 |
+
eval_dict = {}
|
98 |
+
|
99 |
+
for task in tasks:
|
100 |
+
data_list = data["results"][task]
|
101 |
+
golden_list = golden[task]
|
102 |
+
result = evaluate(data_list, golden_list, task)
|
103 |
+
eval_dict[task] = result
|
104 |
+
|
105 |
+
return json.dumps(eval_dict, indent=4)
|
106 |
+
|
107 |
+
|
108 |
except Exception as e:
|
109 |
return str(e)
|
110 |
|
111 |
+
|
112 |
+
|
113 |
demo = gr.Blocks(css=custom_css)
|
114 |
with demo:
|
115 |
gr.HTML(TITLE)
|
|
|
134 |
gr.Markdown("# ✉️✨ Submit your results here!", elem_classes="markdown-text")
|
135 |
|
136 |
gr.Markdown("## Submission Template", elem_classes="markdown-text")
|
137 |
+
gr.Markdown("See [submission_template.json](https://github.com/Ultramarine-spec/LR2Bench/blob/main/submission_template.json) for detail.", elem_classes="markdown-text")
|
138 |
gr.Markdown(SUBMIT_TEMPLATE, elem_classes="markdown-text", height=250)
|
139 |
|
140 |
file_input = gr.File(label="Upload JSON File", file_types=[".json"], height=150)
|
141 |
+
json_output = gr.JSON(label="Your Model Performance") # 输出 JSON 数据
|
142 |
submit_button = gr.Button("Submit")
|
143 |
+
submit_button.click(fn=eval_json, inputs=file_input, outputs=json_output)
|
144 |
|
145 |
|
146 |
with gr.Row():
|
src/about.py
CHANGED
@@ -64,30 +64,24 @@ SUBMIT_TEMPLATE = """
|
|
64 |
"show_on_leaderboard": true, # whether to show your model on the leaderboard
|
65 |
},
|
66 |
"results": {
|
67 |
-
"
|
68 |
-
"
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
"
|
78 |
-
|
79 |
-
"
|
80 |
-
"
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
"TAG2": "RESPONSE2",
|
86 |
-
},
|
87 |
-
"Drop_Quote": {
|
88 |
-
"TAG1": "RESPONSE1",
|
89 |
-
"TAG2": "RESPONSE2",
|
90 |
-
}
|
91 |
}
|
92 |
}
|
93 |
```
|
|
|
64 |
"show_on_leaderboard": true, # whether to show your model on the leaderboard
|
65 |
},
|
66 |
"results": {
|
67 |
+
"crossword": [
|
68 |
+
{"tag": "TAG", "level": "LEVEL", "answer": "ANSWER"},
|
69 |
+
],
|
70 |
+
"acrostic": [
|
71 |
+
{"tag": "TAG", "level": "LEVEL", "answer": "ANSWER"},
|
72 |
+
],
|
73 |
+
"logic": [
|
74 |
+
{"tag": "TAG", "level": "LEVEL", "answer": "ANSWER"},
|
75 |
+
],
|
76 |
+
"cryptogram": [
|
77 |
+
{"tag": "TAG", "level": "LEVEL", "answer": "ANSWER"},
|
78 |
+
],
|
79 |
+
"sudoku": [
|
80 |
+
{"tag": "TAG", "level": "LEVEL", "answer": "ANSWER"},
|
81 |
+
],
|
82 |
+
"drop": [
|
83 |
+
{"tag": "TAG", "level": "LEVEL", "answer": "ANSWER"},
|
84 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
}
|
86 |
}
|
87 |
```
|
src/envs.py
CHANGED
@@ -9,9 +9,10 @@ TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
|
9 |
OWNER = "UltraRonin" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
-
REPO_ID = f"{OWNER}/
|
|
|
13 |
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
-
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
|
|
9 |
OWNER = "UltraRonin" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
+
REPO_ID = f"{OWNER}/LR2Bench"
|
13 |
+
GOLDEN_REPO = f"{OWNER}/LR2Bench_answer"
|
14 |
QUEUE_REPO = f"{OWNER}/requests"
|
15 |
+
|
16 |
|
17 |
# If you setup a cache later, just change HF_HOME
|
18 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
src/evaluation.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import traceback
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
|
6 |
+
level_dict = {
|
7 |
+
"crossword": ["5_5", "10_10", "15_15"],
|
8 |
+
"acrostic": ["easy", "hard"],
|
9 |
+
"logic": ["4_4", "4_5", "4_6", "4_7"],
|
10 |
+
"cryptogram": ["easy", "hard"],
|
11 |
+
"sudoku": ["4_4_easy", "4_4_hard", "9_9_easy", "9_9_hard"],
|
12 |
+
"drop": ["easy", "hard"]
|
13 |
+
}
|
14 |
+
|
15 |
+
|
16 |
+
def norm_dict(d):
|
17 |
+
if d:
|
18 |
+
return {str(key).lower(): str(value).replace(" ", "").lower() for key, value in d.items()}
|
19 |
+
else:
|
20 |
+
return {}
|
21 |
+
|
22 |
+
|
23 |
+
def calculate_dict_correct(gold, prediction_text):
|
24 |
+
try:
|
25 |
+
prediction = eval(prediction_text)
|
26 |
+
gold = norm_dict(gold)
|
27 |
+
prediction = norm_dict(prediction)
|
28 |
+
|
29 |
+
matching_dict = {}
|
30 |
+
correct_cnt = 0
|
31 |
+
|
32 |
+
for key, gold_value in gold.items():
|
33 |
+
predicted_value = prediction.get(key, "MISSING")
|
34 |
+
is_correct = (gold_value == predicted_value)
|
35 |
+
correct_cnt += is_correct
|
36 |
+
matching_dict[key] = {
|
37 |
+
"gold": gold_value,
|
38 |
+
"model": predicted_value,
|
39 |
+
"correct": is_correct
|
40 |
+
}
|
41 |
+
|
42 |
+
correct_100 = (correct_cnt == len(gold))
|
43 |
+
correct_50 = (correct_cnt / len(gold) >= 0.5)
|
44 |
+
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(prediction_text)
|
48 |
+
print(f"Error: {e}")
|
49 |
+
print(traceback.format_exc())
|
50 |
+
|
51 |
+
correct_cnt = 0
|
52 |
+
correct_100 = False
|
53 |
+
correct_50 = False
|
54 |
+
|
55 |
+
matching_dict = {
|
56 |
+
key: {
|
57 |
+
"gold": gold[key],
|
58 |
+
"model": f"ERROR: {str(e)}",
|
59 |
+
"correct": False
|
60 |
+
}
|
61 |
+
for key in gold.keys()
|
62 |
+
}
|
63 |
+
|
64 |
+
return correct_cnt, correct_100, correct_50, matching_dict
|
65 |
+
|
66 |
+
|
67 |
+
def calculate_logic_answer_correct(gold, prediction_text):
|
68 |
+
def norm(ans):
|
69 |
+
return [{str(key).lower(): str(value).lower() for key, value in d.items()} for d in ans]
|
70 |
+
try:
|
71 |
+
prediction = eval(prediction_text)
|
72 |
+
gold = norm(gold)
|
73 |
+
prediction = norm(prediction)
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error: {e}")
|
76 |
+
print(traceback.format_exc())
|
77 |
+
prediction = []
|
78 |
+
|
79 |
+
correct_cnt = 0
|
80 |
+
all_cnt = 0
|
81 |
+
for d_gold in gold:
|
82 |
+
first_pair = list(d_gold.items())[0]
|
83 |
+
d_prediction = [d for d in prediction if first_pair in list(d.items())]
|
84 |
+
if not d_prediction:
|
85 |
+
d_prediction = {}
|
86 |
+
else:
|
87 |
+
d_prediction = d_prediction[0]
|
88 |
+
|
89 |
+
for key, gold_value in d_gold.items():
|
90 |
+
if key == first_pair[0]:
|
91 |
+
continue
|
92 |
+
all_cnt += 1
|
93 |
+
predicted_value = d_prediction.get(key, "")
|
94 |
+
if gold_value == predicted_value:
|
95 |
+
correct_cnt += 1
|
96 |
+
|
97 |
+
correct_100 = (correct_cnt == all_cnt)
|
98 |
+
correct_50 = (correct_cnt / all_cnt >= 0.5)
|
99 |
+
|
100 |
+
return correct_cnt, all_cnt, correct_100, correct_50
|
101 |
+
|
102 |
+
|
103 |
+
def calculate_sudoku_answer_correct(grid, gold, prediction_text):
|
104 |
+
try:
|
105 |
+
prediction = eval(prediction_text)
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Error: {e}")
|
108 |
+
print(traceback.format_exc())
|
109 |
+
prediction = [[]]
|
110 |
+
|
111 |
+
all_cnt = sum([row.count(0) for row in grid])
|
112 |
+
correct_cnt = 0
|
113 |
+
for i in range(min(len(gold), len(prediction))):
|
114 |
+
for j in range(min(len(gold[i]), len(prediction[i]))):
|
115 |
+
if gold[i][j] == prediction[i][j] and grid[i][j] == 0:
|
116 |
+
correct_cnt += 1
|
117 |
+
|
118 |
+
if correct_cnt > all_cnt:
|
119 |
+
print("Error: correct_cnt > all_cnt")
|
120 |
+
correct_cnt = all_cnt
|
121 |
+
|
122 |
+
correct_100 = (correct_cnt == all_cnt)
|
123 |
+
correct_50 = (correct_cnt / all_cnt >= 0.5)
|
124 |
+
|
125 |
+
return correct_cnt, all_cnt, correct_100, correct_50
|
126 |
+
|
127 |
+
|
128 |
+
def calculate_drop_answer_correct(gold, prediction_text):
|
129 |
+
try:
|
130 |
+
prediction = eval(prediction_text)
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Error: {e}")
|
133 |
+
print(traceback.format_exc())
|
134 |
+
prediction = [[]]
|
135 |
+
|
136 |
+
all_cnt = len([x for row in gold for x in row if x != "#"])
|
137 |
+
correct_cnt = 0
|
138 |
+
for i in range(min(len(gold), len(prediction))):
|
139 |
+
for j in range(min(len(gold[i]), len(prediction[i]))):
|
140 |
+
if gold[i][j] != "#" and gold[i][j] == prediction[i][j]:
|
141 |
+
correct_cnt += 1
|
142 |
+
|
143 |
+
if correct_cnt > all_cnt:
|
144 |
+
print("Error: correct_cnt > all_cnt")
|
145 |
+
correct_cnt = all_cnt
|
146 |
+
|
147 |
+
correct_100 = (correct_cnt == all_cnt)
|
148 |
+
correct_50 = (correct_cnt / all_cnt >= 0.5)
|
149 |
+
|
150 |
+
return correct_cnt, all_cnt, correct_100, correct_50
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def eval_crossword(data_list, golden_list):
|
156 |
+
eval_dict = defaultdict(dict)
|
157 |
+
for level in level_dict["crossword"]:
|
158 |
+
golden = [g for g in golden_list if g["level"] == level]
|
159 |
+
golden_dict = {g["tag"]: g for g in golden}
|
160 |
+
|
161 |
+
data = [d for d in data_list if d["level"] == level]
|
162 |
+
|
163 |
+
answer_exist_cnt = 0
|
164 |
+
subtask_cnt = 0
|
165 |
+
subtask_correct_cnt = 0
|
166 |
+
|
167 |
+
sample_correct_100_cnt = 0
|
168 |
+
sample_correct_50_cnt = 0
|
169 |
+
|
170 |
+
|
171 |
+
for d in data:
|
172 |
+
tag = str(d["tag"])
|
173 |
+
model_answer = d['answer']
|
174 |
+
gold = json.loads(golden_dict[tag]['answer'])
|
175 |
+
|
176 |
+
if model_answer != "{}":
|
177 |
+
answer_exist_cnt += 1
|
178 |
+
|
179 |
+
curr_subtask_correct_cnt, curr_correct_100, curr_correct_50, matching_dict = calculate_dict_correct(gold, model_answer)
|
180 |
+
|
181 |
+
subtask_cnt += len(gold)
|
182 |
+
subtask_correct_cnt += curr_subtask_correct_cnt
|
183 |
+
|
184 |
+
sample_correct_100_cnt += curr_correct_100
|
185 |
+
sample_correct_50_cnt += curr_correct_50
|
186 |
+
|
187 |
+
eval_dict[level] = {
|
188 |
+
"CR": answer_exist_cnt / len(data),
|
189 |
+
"S-Acc": subtask_correct_cnt / subtask_cnt,
|
190 |
+
"EM": sample_correct_100_cnt / len(data),
|
191 |
+
"PM-0.5": sample_correct_50_cnt / len(data),
|
192 |
+
}
|
193 |
+
|
194 |
+
return eval_dict
|
195 |
+
|
196 |
+
|
197 |
+
def eval_acrostic(data_list, golden_list):
|
198 |
+
eval_dict = defaultdict(dict)
|
199 |
+
for level in level_dict["acrostic"]:
|
200 |
+
golden = [g for g in golden_list if g["level"] == level]
|
201 |
+
golden_dict = {g["tag"]: g for g in golden}
|
202 |
+
|
203 |
+
data = [d for d in data_list if d["level"] == level]
|
204 |
+
|
205 |
+
answer_exist_cnt = 0
|
206 |
+
subtask_cnt = 0
|
207 |
+
subtask_correct_cnt = 0
|
208 |
+
|
209 |
+
sample_correct_100_cnt = 0
|
210 |
+
sample_correct_50_cnt = 0
|
211 |
+
|
212 |
+
|
213 |
+
for d in data:
|
214 |
+
tag = str(d["tag"])
|
215 |
+
model_answer = d['answer']
|
216 |
+
gold = json.loads(golden_dict[tag]['answer'])
|
217 |
+
|
218 |
+
if model_answer != "{}":
|
219 |
+
answer_exist_cnt += 1
|
220 |
+
|
221 |
+
curr_subtask_correct_cnt, curr_correct_100, curr_correct_50, matching_dict = calculate_dict_correct(gold, model_answer)
|
222 |
+
|
223 |
+
subtask_cnt += len(gold)
|
224 |
+
subtask_correct_cnt += curr_subtask_correct_cnt
|
225 |
+
|
226 |
+
sample_correct_100_cnt += curr_correct_100
|
227 |
+
sample_correct_50_cnt += curr_correct_50
|
228 |
+
|
229 |
+
eval_dict[level] = {
|
230 |
+
"CR": answer_exist_cnt / len(data),
|
231 |
+
"S-Acc": subtask_correct_cnt / subtask_cnt,
|
232 |
+
"EM": sample_correct_100_cnt / len(data),
|
233 |
+
"PM-0.5": sample_correct_50_cnt / len(data),
|
234 |
+
}
|
235 |
+
|
236 |
+
return eval_dict
|
237 |
+
|
238 |
+
|
239 |
+
def eval_logic(data_list, golden_list):
|
240 |
+
eval_dict = defaultdict(dict)
|
241 |
+
for level in level_dict["logic"]:
|
242 |
+
golden = [g for g in golden_list if g["level"] == level]
|
243 |
+
golden_dict = {g["tag"]: g for g in golden}
|
244 |
+
|
245 |
+
data = [d for d in data_list if d["level"] == level]
|
246 |
+
|
247 |
+
answer_exist_cnt = 0
|
248 |
+
subtask_cnt = 0
|
249 |
+
subtask_correct_cnt = 0
|
250 |
+
|
251 |
+
sample_correct_100_cnt = 0
|
252 |
+
sample_correct_50_cnt = 0
|
253 |
+
|
254 |
+
|
255 |
+
for d in data:
|
256 |
+
tag = str(d["tag"])
|
257 |
+
model_answer = d['answer']
|
258 |
+
gold = json.loads(golden_dict[tag]['answer'])
|
259 |
+
|
260 |
+
if model_answer != "[]":
|
261 |
+
answer_exist_cnt += 1
|
262 |
+
|
263 |
+
curr_subtask_correct_cnt, curr_subtask_cnt, curr_correct_100, curr_correct_50 = calculate_logic_answer_correct(gold, model_answer)
|
264 |
+
|
265 |
+
subtask_cnt += curr_subtask_cnt
|
266 |
+
subtask_correct_cnt += curr_subtask_correct_cnt
|
267 |
+
|
268 |
+
sample_correct_100_cnt += curr_correct_100
|
269 |
+
sample_correct_50_cnt += curr_correct_50
|
270 |
+
|
271 |
+
eval_dict[level] = {
|
272 |
+
"CR": answer_exist_cnt / len(data),
|
273 |
+
"S-Acc": subtask_correct_cnt / subtask_cnt,
|
274 |
+
"EM": sample_correct_100_cnt / len(data),
|
275 |
+
"PM-0.5": sample_correct_50_cnt / len(data),
|
276 |
+
}
|
277 |
+
|
278 |
+
return eval_dict
|
279 |
+
|
280 |
+
|
281 |
+
def eval_cryptogram(data_list, golden_list):
|
282 |
+
eval_dict = defaultdict(dict)
|
283 |
+
for level in level_dict["cryptogram"]:
|
284 |
+
golden = [g for g in golden_list if g["level"] == level]
|
285 |
+
golden_dict = {g["tag"]: g for g in golden}
|
286 |
+
|
287 |
+
data = [d for d in data_list if d["level"] == level]
|
288 |
+
|
289 |
+
answer_exist_cnt = 0
|
290 |
+
subtask_cnt = 0
|
291 |
+
subtask_correct_cnt = 0
|
292 |
+
|
293 |
+
sample_correct_100_cnt = 0
|
294 |
+
sample_correct_50_cnt = 0
|
295 |
+
|
296 |
+
|
297 |
+
for d in data:
|
298 |
+
tag = str(d["tag"])
|
299 |
+
model_answer = d['answer']
|
300 |
+
gold = json.loads(golden_dict[tag]['answer'])
|
301 |
+
|
302 |
+
if model_answer != "{}":
|
303 |
+
answer_exist_cnt += 1
|
304 |
+
|
305 |
+
curr_subtask_correct_cnt, curr_correct_100, curr_correct_50, matching_dict = calculate_dict_correct(gold, model_answer)
|
306 |
+
|
307 |
+
subtask_cnt += len(gold)
|
308 |
+
subtask_correct_cnt += curr_subtask_correct_cnt
|
309 |
+
|
310 |
+
sample_correct_100_cnt += curr_correct_100
|
311 |
+
sample_correct_50_cnt += curr_correct_50
|
312 |
+
|
313 |
+
eval_dict[level] = {
|
314 |
+
"CR": answer_exist_cnt / len(data),
|
315 |
+
"S-Acc": subtask_correct_cnt / subtask_cnt,
|
316 |
+
"EM": sample_correct_100_cnt / len(data),
|
317 |
+
"PM-0.5": sample_correct_50_cnt / len(data),
|
318 |
+
}
|
319 |
+
|
320 |
+
return eval_dict
|
321 |
+
|
322 |
+
|
323 |
+
def eval_sudoku(data_list, golden_list):
|
324 |
+
eval_dict = defaultdict(dict)
|
325 |
+
for level in level_dict["sudoku"]:
|
326 |
+
golden = [g for g in golden_list if g["level"] == level]
|
327 |
+
golden_dict = {g["tag"]: g for g in golden}
|
328 |
+
|
329 |
+
data = [d for d in data_list if d["level"] == level]
|
330 |
+
|
331 |
+
answer_exist_cnt = 0
|
332 |
+
subtask_cnt = 0
|
333 |
+
subtask_correct_cnt = 0
|
334 |
+
|
335 |
+
sample_correct_100_cnt = 0
|
336 |
+
sample_correct_50_cnt = 0
|
337 |
+
|
338 |
+
|
339 |
+
for d in data:
|
340 |
+
tag = str(d["tag"])
|
341 |
+
model_answer = d['answer']
|
342 |
+
gold = json.loads(golden_dict[tag]['answer'])
|
343 |
+
grid = gold["grid"]
|
344 |
+
gold = gold["answer"]
|
345 |
+
|
346 |
+
if model_answer != "[[]]":
|
347 |
+
answer_exist_cnt += 1
|
348 |
+
|
349 |
+
curr_subtask_correct_cnt, curr_subtask_cnt, curr_correct_100, curr_correct_50 = calculate_sudoku_answer_correct(grid, gold, model_answer)
|
350 |
+
|
351 |
+
subtask_cnt += curr_subtask_cnt
|
352 |
+
subtask_correct_cnt += curr_subtask_correct_cnt
|
353 |
+
|
354 |
+
sample_correct_100_cnt += curr_correct_100
|
355 |
+
sample_correct_50_cnt += curr_correct_50
|
356 |
+
|
357 |
+
eval_dict[level] = {
|
358 |
+
"CR": answer_exist_cnt / len(data),
|
359 |
+
"S-Acc": subtask_correct_cnt / subtask_cnt,
|
360 |
+
"EM": sample_correct_100_cnt / len(data),
|
361 |
+
"PM-0.5": sample_correct_50_cnt / len(data),
|
362 |
+
}
|
363 |
+
|
364 |
+
return eval_dict
|
365 |
+
|
366 |
+
|
367 |
+
def eval_drop(data_list, golden_list):
|
368 |
+
eval_dict = defaultdict(dict)
|
369 |
+
for level in level_dict["drop"]:
|
370 |
+
golden = [g for g in golden_list if g["level"] == level]
|
371 |
+
golden_dict = {g["tag"]: g for g in golden}
|
372 |
+
|
373 |
+
data = [d for d in data_list if d["level"] == level]
|
374 |
+
|
375 |
+
answer_exist_cnt = 0
|
376 |
+
subtask_cnt = 0
|
377 |
+
subtask_correct_cnt = 0
|
378 |
+
|
379 |
+
sample_correct_100_cnt = 0
|
380 |
+
sample_correct_50_cnt = 0
|
381 |
+
|
382 |
+
|
383 |
+
for d in data:
|
384 |
+
tag = str(d["tag"])
|
385 |
+
model_answer = d['answer']
|
386 |
+
gold = json.loads(golden_dict[tag]['answer'])
|
387 |
+
|
388 |
+
if model_answer != "[[]]":
|
389 |
+
answer_exist_cnt += 1
|
390 |
+
|
391 |
+
curr_subtask_correct_cnt, curr_subtask_cnt, curr_correct_100, curr_correct_50 = calculate_drop_answer_correct(gold, model_answer)
|
392 |
+
|
393 |
+
subtask_cnt += curr_subtask_cnt
|
394 |
+
subtask_correct_cnt += curr_subtask_correct_cnt
|
395 |
+
|
396 |
+
sample_correct_100_cnt += curr_correct_100
|
397 |
+
sample_correct_50_cnt += curr_correct_50
|
398 |
+
|
399 |
+
eval_dict[level] = {
|
400 |
+
"CR": answer_exist_cnt / len(data),
|
401 |
+
"S-Acc": subtask_correct_cnt / subtask_cnt,
|
402 |
+
"EM": sample_correct_100_cnt / len(data),
|
403 |
+
"PM-0.5": sample_correct_50_cnt / len(data),
|
404 |
+
}
|
405 |
+
|
406 |
+
return eval_dict
|
407 |
+
|
408 |
+
|
409 |
+
def evaluate(data_list, golden_list, task):
|
410 |
+
if task == "crossword":
|
411 |
+
return eval_crossword(data_list, golden_list)
|
412 |
+
elif task == "acrostic":
|
413 |
+
return eval_acrostic(data_list, golden_list)
|
414 |
+
elif task == "logic":
|
415 |
+
return eval_logic(data_list, golden_list)
|
416 |
+
elif task == "cryptogram":
|
417 |
+
return eval_cryptogram(data_list, golden_list)
|
418 |
+
elif task == "sudoku":
|
419 |
+
return eval_sudoku(data_list, golden_list)
|
420 |
+
elif task == "drop":
|
421 |
+
return eval_drop(data_list, golden_list)
|
422 |
+
else:
|
423 |
+
raise ValueError(f"Invalid task: {task}")
|
src/leaderboard/read_evals.py
CHANGED
@@ -175,7 +175,7 @@ class EvalResult:
|
|
175 |
# return request_file
|
176 |
|
177 |
|
178 |
-
def get_raw_eval_results(results_path: str,
|
179 |
"""From the path of the results folder root, extract all needed info for results"""
|
180 |
model_result_filepaths = []
|
181 |
|
|
|
175 |
# return request_file
|
176 |
|
177 |
|
178 |
+
def get_raw_eval_results(results_path: str, task: str) -> list[EvalResult]:
|
179 |
"""From the path of the results folder root, extract all needed info for results"""
|
180 |
model_result_filepaths = []
|
181 |
|
src/populate.py
CHANGED
@@ -8,10 +8,10 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
11 |
-
def get_leaderboard_df(results_path: str,
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
# import pdb; pdb.set_trace()
|
14 |
-
raw_data = get_raw_eval_results(results_path,
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
|
17 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
11 |
+
def get_leaderboard_df(results_path: str, cols: list, task) -> pd.DataFrame:
|
12 |
"""Creates a dataframe from all the individual experiment results"""
|
13 |
# import pdb; pdb.set_trace()
|
14 |
+
raw_data = get_raw_eval_results(results_path, task)
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
|
17 |
df = pd.DataFrame.from_records(all_data_json)
|