Spaces:
Running
Running
Uddipan Basu Bir
commited on
Commit
·
2ebc710
1
Parent(s):
fabf362
Download checkpoint from HF hub in OcrReorderPipeline
Browse files
app.py
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import base64
|
4 |
from io import BytesIO
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
-
|
8 |
from inference import OcrReorderPipeline
|
9 |
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
|
10 |
|
11 |
-
#
|
12 |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
13 |
model = LayoutLMv3Model.from_pretrained(repo)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
|
@@ -16,14 +13,17 @@ processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_
|
|
16 |
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
|
17 |
|
18 |
def infer(image_path, json_file):
|
19 |
-
# 2) Extract the filename user uploaded
|
20 |
img_name = os.path.basename(image_path)
|
21 |
|
22 |
-
#
|
|
|
23 |
with open(json_file.name, "r", encoding="utf-8") as f:
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# 4) Find the entry matching this image
|
27 |
entry = next((e for e in data if e["img_name"] == img_name), None)
|
28 |
if entry is None:
|
29 |
return f"❌ No JSON entry found for image '{img_name}'"
|
@@ -31,24 +31,22 @@ def infer(image_path, json_file):
|
|
31 |
words = entry["src_word_list"]
|
32 |
boxes = entry["src_wordbox_list"]
|
33 |
|
34 |
-
#
|
35 |
img = Image.open(image_path).convert("RGB")
|
36 |
buf = BytesIO(); img.save(buf, format="PNG")
|
37 |
b64 = base64.b64encode(buf.getvalue()).decode()
|
38 |
|
39 |
-
#
|
40 |
return pipe(b64, words, boxes)[0]
|
41 |
|
42 |
demo = gr.Interface(
|
43 |
fn=infer,
|
44 |
inputs=[
|
45 |
-
# get the file path so we can match the filename
|
46 |
gr.Image(type="filepath", label="Upload Image"),
|
47 |
-
|
48 |
-
gr.File(label="Upload JSON file")
|
49 |
],
|
50 |
outputs="text",
|
51 |
-
title="OCR Reorder (
|
52 |
)
|
53 |
|
54 |
if __name__ == "__main__":
|
|
|
1 |
+
import os, json, base64
|
|
|
|
|
2 |
from io import BytesIO
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
|
|
5 |
from inference import OcrReorderPipeline
|
6 |
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
|
7 |
|
8 |
+
# Load model/tokenizer/processor...
|
9 |
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
10 |
model = LayoutLMv3Model.from_pretrained(repo)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
|
|
|
13 |
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
|
14 |
|
15 |
def infer(image_path, json_file):
|
|
|
16 |
img_name = os.path.basename(image_path)
|
17 |
|
18 |
+
# Parse NDJSON from the uploaded file
|
19 |
+
data = []
|
20 |
with open(json_file.name, "r", encoding="utf-8") as f:
|
21 |
+
for line in f:
|
22 |
+
line = line.strip()
|
23 |
+
if not line:
|
24 |
+
continue
|
25 |
+
data.append(json.loads(line))
|
26 |
|
|
|
27 |
entry = next((e for e in data if e["img_name"] == img_name), None)
|
28 |
if entry is None:
|
29 |
return f"❌ No JSON entry found for image '{img_name}'"
|
|
|
31 |
words = entry["src_word_list"]
|
32 |
boxes = entry["src_wordbox_list"]
|
33 |
|
34 |
+
# Read and encode image
|
35 |
img = Image.open(image_path).convert("RGB")
|
36 |
buf = BytesIO(); img.save(buf, format="PNG")
|
37 |
b64 = base64.b64encode(buf.getvalue()).decode()
|
38 |
|
39 |
+
# Run pipeline
|
40 |
return pipe(b64, words, boxes)[0]
|
41 |
|
42 |
demo = gr.Interface(
|
43 |
fn=infer,
|
44 |
inputs=[
|
|
|
45 |
gr.Image(type="filepath", label="Upload Image"),
|
46 |
+
gr.File(label="Upload JSON (NDJSON format)")
|
|
|
47 |
],
|
48 |
outputs="text",
|
49 |
+
title="OCR Reorder (Image + NDJSON upload)"
|
50 |
)
|
51 |
|
52 |
if __name__ == "__main__":
|