Spaces:
Running
Running
Uddipan Basu Bir
commited on
Commit
·
fabf362
1
Parent(s):
93dce4d
Download checkpoint from HF hub in OcrReorderPipeline
Browse files
app.py
CHANGED
@@ -1,46 +1,54 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
from io import BytesIO
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
|
|
5 |
from inference import OcrReorderPipeline
|
6 |
-
from transformers import
|
7 |
-
AutoProcessor,
|
8 |
-
LayoutLMv3Model,
|
9 |
-
AutoTokenizer
|
10 |
-
)
|
11 |
-
import torch
|
12 |
|
13 |
-
# 1) Load
|
14 |
-
repo
|
15 |
model = LayoutLMv3Model.from_pretrained(repo)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
|
17 |
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
boxes = json.loads(boxes_json)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
b64 = base64.b64encode(buf.getvalue()).decode()
|
30 |
|
31 |
-
#
|
32 |
return pipe(b64, words, boxes)[0]
|
33 |
|
34 |
-
# 3) Gradio UI
|
35 |
demo = gr.Interface(
|
36 |
fn=infer,
|
37 |
inputs=[
|
38 |
-
|
39 |
-
gr.
|
40 |
-
|
|
|
41 |
],
|
42 |
outputs="text",
|
43 |
-
title="OCR Reorder
|
44 |
)
|
45 |
|
46 |
if __name__ == "__main__":
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import base64
|
4 |
from io import BytesIO
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
+
|
8 |
from inference import OcrReorderPipeline
|
9 |
+
from transformers import AutoProcessor, LayoutLMv3Model, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# 1) Load your model + tokenizer + processor as before
|
12 |
+
repo = "Uddipan107/ocr-layoutlmv3-base-t5-small"
|
13 |
model = LayoutLMv3Model.from_pretrained(repo)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(repo, subfolder="preprocessor")
|
15 |
processor = AutoProcessor.from_pretrained(repo, subfolder="preprocessor", apply_ocr=False)
|
16 |
+
pipe = OcrReorderPipeline(model, tokenizer, processor, device=0)
|
17 |
+
|
18 |
+
def infer(image_path, json_file):
|
19 |
+
# 2) Extract the filename user uploaded
|
20 |
+
img_name = os.path.basename(image_path)
|
21 |
+
|
22 |
+
# 3) Load the entire JSON; assume it’s a list of entries
|
23 |
+
with open(json_file.name, "r", encoding="utf-8") as f:
|
24 |
+
data = json.load(f)
|
25 |
|
26 |
+
# 4) Find the entry matching this image
|
27 |
+
entry = next((e for e in data if e["img_name"] == img_name), None)
|
28 |
+
if entry is None:
|
29 |
+
return f"❌ No JSON entry found for image '{img_name}'"
|
30 |
|
31 |
+
words = entry["src_word_list"]
|
32 |
+
boxes = entry["src_wordbox_list"]
|
|
|
33 |
|
34 |
+
# 5) Read the image, encode to base64 for your pipeline
|
35 |
+
img = Image.open(image_path).convert("RGB")
|
36 |
+
buf = BytesIO(); img.save(buf, format="PNG")
|
37 |
b64 = base64.b64encode(buf.getvalue()).decode()
|
38 |
|
39 |
+
# 6) Call your pipeline and return the reordered text
|
40 |
return pipe(b64, words, boxes)[0]
|
41 |
|
|
|
42 |
demo = gr.Interface(
|
43 |
fn=infer,
|
44 |
inputs=[
|
45 |
+
# get the file path so we can match the filename
|
46 |
+
gr.Image(type="filepath", label="Upload Image"),
|
47 |
+
# this is the JSON file containing a list of entries
|
48 |
+
gr.File(label="Upload JSON file")
|
49 |
],
|
50 |
outputs="text",
|
51 |
+
title="OCR Reorder (match image → JSON entry)"
|
52 |
)
|
53 |
|
54 |
if __name__ == "__main__":
|