Ubik80 commited on
Commit
df283f3
·
verified ·
1 Parent(s): b76945c

added test

Browse files
Files changed (1) hide show
  1. app.py +61 -107
app.py CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
3
  import requests
4
  import pandas as pd
5
 
6
- from agent import create_agent
7
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
@@ -11,24 +11,24 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
  def run_and_submit_all(profile: gr.OAuthProfile | None):
13
  """
14
- Fetches all questions, runs the SmolAgent on them, submits all answers,
15
- and displays the results.
16
  """
17
  # --- Determine HF Space Runtime URL and Repo URL ---
18
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
19
 
20
  if profile:
21
- username = f"{profile.username}"
22
  print(f"User logged in: {username}")
23
  else:
24
  print("User not logged in.")
25
- return "Please Login to Hugging Face with the button.", None
26
 
27
  api_url = DEFAULT_API_URL
28
  questions_url = f"{api_url}/questions"
29
  submit_url = f"{api_url}/submit"
30
 
31
- # 1. Instantiate Agent
32
  try:
33
  agent = create_agent()
34
  print("SmolAgent initialized.")
@@ -36,11 +36,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
36
  print(f"Error instantiating agent: {e}")
37
  return f"Error initializing agent: {e}", None
38
 
39
- # Link to codebase for verification
40
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
41
  print(agent_code)
42
 
43
- # 2. Fetch Questions
44
  print(f"Fetching questions from: {questions_url}")
45
  try:
46
  response = requests.get(questions_url, timeout=15)
@@ -50,18 +50,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
50
  print("Fetched questions list is empty.")
51
  return "Fetched questions list is empty or invalid format.", None
52
  print(f"Fetched {len(questions_data)} questions.")
53
- except requests.exceptions.RequestException as e:
54
  print(f"Error fetching questions: {e}")
55
  return f"Error fetching questions: {e}", None
56
- except requests.exceptions.JSONDecodeError as e:
57
- print(f"Error decoding JSON response from questions endpoint: {e}")
58
- print(f"Response text: {response.text[:500]}")
59
- return f"Error decoding server response for questions: {e}", None
60
- except Exception as e:
61
- print(f"An unexpected error occurred fetching questions: {e}")
62
- return f"An unexpected error occurred fetching questions: {e}", None
63
 
64
- # 3. Run Agent
65
  results_log = []
66
  answers_payload = []
67
  print(f"Running agent on {len(questions_data)} questions...")
@@ -69,117 +62,78 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
69
  task_id = item.get("task_id")
70
  question_text = item.get("question")
71
  if not task_id or question_text is None:
72
- print(f"Skipping item with missing task_id or question: {item}")
73
  continue
74
  try:
75
- submitted_answer = agent.run(question=question_text)
76
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
77
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
78
  except Exception as e:
79
- print(f"Error running agent on task {task_id}: {e}")
80
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
81
 
82
  if not answers_payload:
83
- print("Agent did not produce any answers to submit.")
84
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
85
-
86
- # 4. Prepare Submission
87
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
88
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
89
- print(status_update)
90
 
91
- # 5. Submit
92
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
 
93
  try:
94
- response = requests.post(submit_url, json=submission_data, timeout=60)
95
- response.raise_for_status()
96
- result_data = response.json()
97
- final_status = (
98
  f"Submission Successful!\n"
99
- f"User: {result_data.get('username')}\n"
100
- f"Overall Score: {result_data.get('score', 'N/A')}% "
101
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
102
- f"Message: {result_data.get('message', 'No message received.')}"
103
  )
104
- print("Submission successful.")
105
- results_df = pd.DataFrame(results_log)
106
- return final_status, results_df
107
- except requests.exceptions.HTTPError as e:
108
- error_detail = f"Server responded with status {e.response.status_code}."
109
- try:
110
- error_json = e.response.json()
111
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
112
- except requests.exceptions.JSONDecodeError:
113
- error_detail += f" Response: {e.response.text[:500]}"
114
- status_message = f"Submission Failed: {error_detail}"
115
- print(status_message)
116
- results_df = pd.DataFrame(results_log)
117
- return status_message, results_df
118
- except requests.exceptions.Timeout:
119
- status_message = "Submission Failed: The request timed out."
120
- print(status_message)
121
- results_df = pd.DataFrame(results_log)
122
- return status_message, results_df
123
- except requests.exceptions.RequestException as e:
124
- status_message = f"Submission Failed: Network error - {e}"
125
- print(status_message)
126
- results_df = pd.DataFrame(results_log)
127
- return status_message, results_df
128
  except Exception as e:
129
- status_message = f"An unexpected error occurred during submission: {e}"
130
- print(status_message)
131
- results_df = pd.DataFrame(results_log)
132
- return status_message, results_df
133
 
134
 
135
- # --- Build Gradio Interface using Blocks ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  with gr.Blocks() as demo:
137
  gr.Markdown("# SmolAgent Evaluation Runner")
138
  gr.Markdown(
139
  """
140
  **Instructions:**
141
- 1. Clone this space and define your agent logic in agent.py.
142
- 2. Log in to your Hugging Face account using the button below.
143
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
144
-
145
- ---
146
- **Disclaimers:**
147
- After clicking the submit button, it can take some time for the agent to process all questions.
148
- This space offers a basic setup; feel free to optimize or extend it (e.g., caching answers, async execution).
149
  """
150
  )
151
 
152
- gr.LoginButton()
 
 
153
 
154
- run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
 
155
 
156
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
157
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
158
-
159
- run_button.click(
160
- fn=run_and_submit_all,
161
- outputs=[status_output, results_table]
162
- )
163
 
164
  if __name__ == "__main__":
165
- print("\n" + "-"*30 + " App Starting " + "-"*30)
166
- space_host_startup = os.getenv("SPACE_HOST")
167
- space_id_startup = os.getenv("SPACE_ID")
168
-
169
- if space_host_startup:
170
- print(f"✅ SPACE_HOST found: {space_host_startup}")
171
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
172
- else:
173
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
174
-
175
- if space_id_startup:
176
- print(f"✅ SPACE_ID found: {space_id_startup}")
177
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
178
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
179
- else:
180
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
181
-
182
- print("-"*(60 + len(" App Starting ")) + "\n")
183
-
184
- print("Launching Gradio Interface for SmolAgent Evaluation...")
185
  demo.launch(debug=True, share=False)
 
3
  import requests
4
  import pandas as pd
5
 
6
+ from agent import create_agent, fetch_random_question
7
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
 
11
 
12
  def run_and_submit_all(profile: gr.OAuthProfile | None):
13
  """
14
+ Fetch all questions, run the SmolAgent on them, submit all answers,
15
+ and display the results.
16
  """
17
  # --- Determine HF Space Runtime URL and Repo URL ---
18
+ space_id = os.getenv("SPACE_ID")
19
 
20
  if profile:
21
+ username = profile.username
22
  print(f"User logged in: {username}")
23
  else:
24
  print("User not logged in.")
25
+ return "Please login to Hugging Face with the button.", None
26
 
27
  api_url = DEFAULT_API_URL
28
  questions_url = f"{api_url}/questions"
29
  submit_url = f"{api_url}/submit"
30
 
31
+ # 1. Instantiate SmolAgent
32
  try:
33
  agent = create_agent()
34
  print("SmolAgent initialized.")
 
36
  print(f"Error instantiating agent: {e}")
37
  return f"Error initializing agent: {e}", None
38
 
39
+ # Code link for verification
40
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
41
  print(agent_code)
42
 
43
+ # 2. Fetch all questions
44
  print(f"Fetching questions from: {questions_url}")
45
  try:
46
  response = requests.get(questions_url, timeout=15)
 
50
  print("Fetched questions list is empty.")
51
  return "Fetched questions list is empty or invalid format.", None
52
  print(f"Fetched {len(questions_data)} questions.")
53
+ except Exception as e:
54
  print(f"Error fetching questions: {e}")
55
  return f"Error fetching questions: {e}", None
 
 
 
 
 
 
 
56
 
57
+ # 3. Run agent on each question
58
  results_log = []
59
  answers_payload = []
60
  print(f"Running agent on {len(questions_data)} questions...")
 
62
  task_id = item.get("task_id")
63
  question_text = item.get("question")
64
  if not task_id or question_text is None:
65
+ print(f"Skipping invalid item: {item}")
66
  continue
67
  try:
68
+ answer = agent.run(question=question_text)
69
+ answers_payload.append({"task_id": task_id, "submitted_answer": answer})
70
+ results_log.append({"Task ID": task_id, "Question": question_text, "Answer": answer})
71
  except Exception as e:
72
+ print(f"Error on task {task_id}: {e}")
73
+ results_log.append({"Task ID": task_id, "Question": question_text, "Answer": f"ERROR: {e}"})
74
 
75
  if not answers_payload:
76
+ return "Agent produced no answers.", pd.DataFrame(results_log)
 
 
 
 
 
 
77
 
78
+ # 4. Submit answers
79
+ payload = {"username": username, "agent_code": agent_code, "answers": answers_payload}
80
+ print(f"Submitting {len(answers_payload)} answers...")
81
  try:
82
+ resp = requests.post(submit_url, json=payload, timeout=60)
83
+ resp.raise_for_status()
84
+ data = resp.json()
85
+ status = (
86
  f"Submission Successful!\n"
87
+ f"User: {data.get('username')}\n"
88
+ f"Score: {data.get('score')}% ({data.get('correct_count')}/{data.get('total_attempted')})\n"
89
+ f"Message: {data.get('message')}"
 
90
  )
91
+ return status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  except Exception as e:
93
+ print(f"Submission error: {e}")
94
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
 
 
95
 
96
 
97
+ def test_random_question(profile: gr.OAuthProfile | None):
98
+ """
99
+ Fetch a random GAIA question and get the agent's answer for testing.
100
+ """
101
+ if not profile:
102
+ return "Please login to test.", ""
103
+
104
+ try:
105
+ q = fetch_random_question()
106
+ agent = create_agent()
107
+ ans = agent.run(question=q.get('question', ''))
108
+ return q.get('question', ''), ans
109
+ except Exception as e:
110
+ print(f"Test error: {e}")
111
+ return f"Error: {e}", ""
112
+
113
+
114
+ # --- Build Gradio Interface ---
115
  with gr.Blocks() as demo:
116
  gr.Markdown("# SmolAgent Evaluation Runner")
117
  gr.Markdown(
118
  """
119
  **Instructions:**
120
+ 1. Clone this space and define your agent logic in agent.py.
121
+ 2. Log in with your Hugging Face account.
122
+ 3. Use 'Run Evaluation & Submit All Answers' or 'Test Random Question'.
 
 
 
 
 
123
  """
124
  )
125
 
126
+ login = gr.LoginButton()
127
+ run_all_btn = gr.Button("Run Evaluation & Submit All Answers")
128
+ test_btn = gr.Button("Test Random Question")
129
 
130
+ status_box = gr.Textbox(label="Status / Result", lines=5, interactive=False)
131
+ results_table = gr.DataFrame(label="Full Results Table", wrap=True)
132
+ question_box = gr.Textbox(label="Random Question", lines=3, interactive=False)
133
+ answer_box = gr.Textbox(label="Agent Answer", lines=3, interactive=False)
134
 
135
+ run_all_btn.click(fn=run_and_submit_all, inputs=[login], outputs=[status_box, results_table])
136
+ test_btn.click(fn=test_random_question, inputs=[login], outputs=[question_box, answer_box])
 
 
 
 
 
137
 
138
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
  demo.launch(debug=True, share=False)