Ubik80 commited on
Commit
b76945c
·
verified ·
1 Parent(s): c216f4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -42
app.py CHANGED
@@ -1,34 +1,24 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,13 +28,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
 
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
@@ -55,21 +47,21 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
  print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
  print(f"An unexpected error occurred fetching questions: {e}")
70
  return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
@@ -80,18 +72,18 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
80
  print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
- submitted_answer = agent(question_text)
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
  print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
  print(status_update)
@@ -142,19 +134,18 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
142
 
143
  # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
  3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
 
154
  ---
155
  **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
@@ -163,7 +154,6 @@ with gr.Blocks() as demo:
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -173,9 +163,8 @@ with gr.Blocks() as demo:
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
@@ -183,7 +172,7 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
@@ -192,5 +181,5 @@ if __name__ == "__main__":
192
 
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
 
6
+ from agent import create_agent
7
+
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
+
12
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
13
  """
14
+ Fetches all questions, runs the SmolAgent on them, submits all answers,
15
  and displays the results.
16
  """
17
  # --- Determine HF Space Runtime URL and Repo URL ---
18
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
19
 
20
  if profile:
21
+ username = f"{profile.username}"
22
  print(f"User logged in: {username}")
23
  else:
24
  print("User not logged in.")
 
28
  questions_url = f"{api_url}/questions"
29
  submit_url = f"{api_url}/submit"
30
 
31
+ # 1. Instantiate Agent
32
  try:
33
+ agent = create_agent()
34
+ print("SmolAgent initialized.")
35
  except Exception as e:
36
  print(f"Error instantiating agent: {e}")
37
  return f"Error initializing agent: {e}", None
38
+
39
+ # Link to codebase for verification
40
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
41
  print(agent_code)
42
 
 
47
  response.raise_for_status()
48
  questions_data = response.json()
49
  if not questions_data:
50
+ print("Fetched questions list is empty.")
51
+ return "Fetched questions list is empty or invalid format.", None
52
  print(f"Fetched {len(questions_data)} questions.")
53
  except requests.exceptions.RequestException as e:
54
  print(f"Error fetching questions: {e}")
55
  return f"Error fetching questions: {e}", None
56
  except requests.exceptions.JSONDecodeError as e:
57
+ print(f"Error decoding JSON response from questions endpoint: {e}")
58
+ print(f"Response text: {response.text[:500]}")
59
+ return f"Error decoding server response for questions: {e}", None
60
  except Exception as e:
61
  print(f"An unexpected error occurred fetching questions: {e}")
62
  return f"An unexpected error occurred fetching questions: {e}", None
63
 
64
+ # 3. Run Agent
65
  results_log = []
66
  answers_payload = []
67
  print(f"Running agent on {len(questions_data)} questions...")
 
72
  print(f"Skipping item with missing task_id or question: {item}")
73
  continue
74
  try:
75
+ submitted_answer = agent.run(question=question_text)
76
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
77
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
78
  except Exception as e:
79
+ print(f"Error running agent on task {task_id}: {e}")
80
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
81
 
82
  if not answers_payload:
83
  print("Agent did not produce any answers to submit.")
84
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
85
 
86
+ # 4. Prepare Submission
87
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
88
  status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
89
  print(status_update)
 
134
 
135
  # --- Build Gradio Interface using Blocks ---
136
  with gr.Blocks() as demo:
137
+ gr.Markdown("# SmolAgent Evaluation Runner")
138
  gr.Markdown(
139
  """
140
  **Instructions:**
141
+ 1. Clone this space and define your agent logic in agent.py.
142
+ 2. Log in to your Hugging Face account using the button below.
 
143
  3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
144
 
145
  ---
146
  **Disclaimers:**
147
+ After clicking the submit button, it can take some time for the agent to process all questions.
148
+ This space offers a basic setup; feel free to optimize or extend it (e.g., caching answers, async execution).
149
  """
150
  )
151
 
 
154
  run_button = gr.Button("Run Evaluation & Submit All Answers")
155
 
156
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
157
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
158
 
159
  run_button.click(
 
163
 
164
  if __name__ == "__main__":
165
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
166
  space_host_startup = os.getenv("SPACE_HOST")
167
+ space_id_startup = os.getenv("SPACE_ID")
168
 
169
  if space_host_startup:
170
  print(f"✅ SPACE_HOST found: {space_host_startup}")
 
172
  else:
173
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
174
 
175
+ if space_id_startup:
176
  print(f"✅ SPACE_ID found: {space_id_startup}")
177
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
178
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
181
 
182
  print("-"*(60 + len(" App Starting ")) + "\n")
183
 
184
+ print("Launching Gradio Interface for SmolAgent Evaluation...")
185
+ demo.launch(debug=True, share=False)