Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from agent import create_agent, fetch_random_question | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
def run_and_submit_all(profile): | |
if not profile: | |
return "Please login to Hugging Face with the login button.", None | |
username = getattr(profile, "username", None) or getattr(profile, "name", None) | |
if not username: | |
return "Login error: username not found.", None | |
# Fetch questions | |
try: | |
qs = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15) | |
qs.raise_for_status() | |
questions = qs.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
# Instantiate agent | |
agent = create_agent() | |
# Run and collect answers | |
results, payload = [], [] | |
for q in questions: | |
tid, text = q.get("task_id"), q.get("question") | |
if not (tid and text): | |
continue | |
try: | |
ans = agent.run(text) # <-- positional! | |
except Exception as e: | |
ans = f"ERROR: {e}" | |
results.append({"Task ID": tid, "Question": text, "Answer": ans}) | |
payload.append({"task_id": tid, "submitted_answer": ans}) | |
if not payload: | |
return "Agent returned no answers.", pd.DataFrame(results) | |
# Submit | |
submission = { | |
"username": username, | |
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main", | |
"answers": payload | |
} | |
try: | |
resp = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60) | |
resp.raise_for_status() | |
data = resp.json() | |
status = ( | |
f"Submission Successful!\n" | |
f"User: {data['username']}\n" | |
f"Score: {data['score']}% ({data['correct_count']}/{data['total_attempted']})\n" | |
f"Message: {data['message']}" | |
) | |
except Exception as e: | |
status = f"Submission Failed: {e}" | |
return status, pd.DataFrame(results) | |
def test_random_question(profile): | |
if not profile: | |
return "Please login to Hugging Face with the login button.", "" | |
q = fetch_random_question() | |
agent = create_agent() | |
# Positional call again | |
answer = agent.run(q["question"]) | |
return q["question"], answer | |
with gr.Blocks() as demo: | |
gr.Markdown("# SmolAgent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Clone this space and define your agent logic in `agent.py`. | |
2. Log in with your Hugging Face account using the login button below. | |
3. Use **Run Evaluation & Submit All Answers** or **Test Random Question**. | |
""" | |
) | |
login = gr.LoginButton() | |
run_btn = gr.Button("Run Evaluation & Submit All Answers") | |
test_btn = gr.Button("Test Random Question") | |
status_out = gr.Textbox(label="Status / Result", lines=5, interactive=False) | |
table_out = gr.DataFrame(label="Full Results Table", wrap=True) | |
question_out = gr.Textbox(label="Random Question", lines=3, interactive=False) | |
answer_out = gr.Textbox(label="Agent Answer", lines=3, interactive=False) | |
run_btn.click(fn=run_and_submit_all, inputs=[login], outputs=[status_out, table_out]) | |
test_btn.click(fn=test_random_question, inputs=[login], outputs=[question_out, answer_out]) | |
if __name__ == "__main__": | |
demo.launch(debug=True, share=False) | |