Spaces:
Sleeping
Sleeping
File size: 5,692 Bytes
313ffa3 008cbc7 bedc31f d7039db 008cbc7 bedc31f b39af27 5fcb1c0 313ffa3 d640ea6 f7ae4d3 d7039db 9c8d7b2 ccb396a b39af27 ccb396a b39af27 9c8d7b2 ccb396a b39af27 9c8d7b2 ccb396a b39af27 9c8d7b2 b39af27 9c8d7b2 ccb396a 9c8d7b2 b39af27 9c8d7b2 ccb396a 9c8d7b2 cae59a3 313ffa3 ccb396a 055398c 9c8d7b2 d640ea6 008cbc7 9c8d7b2 cae59a3 008cbc7 9c8d7b2 008cbc7 ccb396a 008cbc7 b39af27 008cbc7 9c8d7b2 008cbc7 9c8d7b2 b39af27 ccb396a 9c8d7b2 b39af27 ccb396a 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 008cbc7 2be2025 008cbc7 9c8d7b2 d7039db 9c8d7b2 b39af27 9c8d7b2 b39af27 9c8d7b2 313ffa3 d640ea6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import pickle
import pandas as pd
import shap
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# Load the XGBoost model from Pickle
loaded_model = pickle.load(open("h22_xgb_Final(2).pkl", 'rb'))
# Setup SHAP Explainer for XGBoost (Do not change this)
explainer = shap.Explainer(loaded_model)
def safe_convert(value, default, min_val, max_val):
try:
num = float(value)
return max(min_val, min(num, max_val)) # Ensure within range
except (TypeError, ValueError):
return default # Use default if conversion fails
# Create the main function for the model
def main_func(Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing):
# These mappings are EXAMPLES only, not used in the model
ChainScale_mapping = {
'Luxury': 1,
'Upper Midscale': 2,
'Upper Upscale': 3,
'Upscale': 4,
'Independent': 5,
}
department_mapping = {
"Guest Services": 1,
"Food and Beverage": 2,
"Housekeeping": 3,
"Front Office Operations": 4,
"Guest Activities": 5,
}
# Convert inputs to safe numeric values
LearningDevelopment = safe_convert(LearningDevelopment, 3.0, 1, 5)
SupportiveGM = safe_convert(SupportiveGM, 3.0, 1, 5)
Merit = safe_convert(Merit, 3.0, 1, 5)
WorkEnvironment = safe_convert(WorkEnvironment, 3.0, 1, 5)
Engagement = safe_convert(Engagement, 3.0, 1, 5)
WellBeing = safe_convert(WellBeing, 3.0, 1, 5)
# Only include model-relevant features
new_row = pd.DataFrame({
'SupportiveGM': [SupportiveGM],
'Merit': [Merit],
'LearningDevelopment': [LearningDevelopment],
'WorkEnvironment': [WorkEnvironment],
'Engagement': [Engagement],
'WellBeing': [WellBeing]
}).astype(float)
# Predict probabilities
prob = loaded_model.predict_proba(new_row)
if prob.shape[1] == 2:
leave_prob = float(prob[0][0])
stay_prob = float(prob[0][1])
else:
leave_prob = float(prob[0])
stay_prob = 1 - leave_prob
# Generate SHAP values
shap_values = explainer(new_row)
fig, ax = plt.subplots(figsize=(8, 4))
shap.waterfall_plot(shap.Explanation(
values=shap_values.values[0],
base_values=shap_values.base_values[0],
data=new_row.iloc[0]
))
plt.tight_layout()
local_plot = plt.gcf()
plt.close()
return {"Leave": leave_prob, "Stay": stay_prob}, local_plot
# Create the UI
title = "**Mod 3 Team 5: Employee Turnover Predictor & Interpreter**"
description1 = """
This app predicts whether an employee intends to stay or leave based on satisfaction factors.
"""
description2 = """
To use the app, adjust the values of the employee satisfaction factors and click on Analyze.
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
with gr.Row():
with gr.Column():
Department = gr.Radio(
["Guest Services", "Food and Beverage", "Housekeeping", "Front Office Operations", "Guest Activities"],
label="Department (Example Only)",
value="Guest Services"
)
ChainScale = gr.Dropdown(
["Luxury", "Upper Midscale", "Upper Upscale", "Upscale", "Independent"],
label="ChainScale (Example Only)",
value="Upper Upscale"
)
SupportiveGM = gr.Slider(
label="SupportiveGM Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
Merit = gr.Slider(
label="Merit Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
LearningDevelopment = gr.Slider(
label="Learning and Development Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
WorkEnvironment = gr.Slider(
label="Work Environment Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
Engagement = gr.Slider(
label="Engagement Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
WellBeing = gr.Slider(
label="Well-Being Score", minimum=1, maximum=5, value=4, step=0.1,
interactive=True
)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True, scale=1, min_width=600) as output_col:
label = gr.Label(label="Predicted Intent to Stay vs Leave")
local_plot = gr.Plot(label='SHAP Waterfall Analysis')
submit_btn.click(
main_func,
[Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
[label, local_plot],
api_name="Employee_Turnover"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples(
[
["Guest Services", "Upper Upscale", 2.5, 3.0, 2.8, 3.5, 4.0, 3.5],
["Food and Beverage", "Upper Upscale", 3.5, 4.0, 4.2, 4.5, 4.5, 4.2],
["Housekeeping", "Upper Upscale", 5.0, 4.8, 5.0, 4.7, 5.0, 4.8]
],
[Department, ChainScale, SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
[label, local_plot],
main_func,
cache_examples=True
)
demo.launch()
|