Spaces:
Sleeping
Sleeping
File size: 833 Bytes
bedc31f d7039db bedc31f d7039db bedc31f d7039db bedc31f d7039db bedc31f d7039db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
import pickle
import numpy as np
# Load the trained model
with open("clf.pkl", "rb") as f:
clf = pickle.load(f)
# Define the prediction function
def predict(SupportiveGM, Merit, LearningDevelopment, WorkEnvironmente, Engagement, WellBeing, ChainScale):
# Convert inputs into a NumPy array
input_data = np.array([[SupportiveGM, Merit, LearningDevelopment, WorkEnvironmente, Engagement, WellBeing, ChainScale]])
# Make prediction using the model
prediction = clf.predict(input_data)
return f"Predicted Turnover Probability: {prediction[0]}"
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=["number"] * 7,
outputs="text",
title="Employee Turnover Prediction",
api_name="/Employee_Turnover"
)
if __name__ == "__main__":
iface.launch()
|