File size: 3,910 Bytes
313ffa3
a3ffeca
008cbc7
 
 
bedc31f
d7039db
008cbc7
bedc31f
313ffa3
0ebc46b
313ffa3
008cbc7
313ffa3
 
 
 
 
 
d7039db
 
008cbc7
313ffa3
 
 
 
 
 
 
 
008cbc7
313ffa3
a3ffeca
 
313ffa3
 
 
 
 
 
 
008cbc7
 
 
 
313ffa3
a3ffeca
008cbc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7039db
008cbc7
 
 
 
 
 
313ffa3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pickle
import xgboost as xgb
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt

# Load the XGBoost model from Pickle
with open("h22_xgb_Final.pkl", "wb") as f:
    loaded_model = pickle.load(f)

# Ensure model is a Booster (handles both XGBClassifier & Booster cases)
if isinstance(loaded_model, xgb.XGBClassifier):
    loaded_model = loaded_model.get_booster()

# Setup SHAP Explainer for XGBoost
explainer = shap.TreeExplainer(loaded_model)  # Use TreeExplainer for XGBoost models

# Define the prediction function
def main_func(SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing):
    new_row = pd.DataFrame.from_dict({
        'SupportiveGM': SupportiveGM, 
        'Merit': Merit,
        'LearningDevelopment': LearningDevelopment, 
        'WorkEnvironment': WorkEnvironment, 
        'Engagement': Engagement, 
        'WellBeing': WellBeing
    }, orient='index').transpose()
    
    # Convert new_row to DMatrix for XGBoost Booster
    dmatrix_new = xgb.DMatrix(new_row)

    # Predict probability for staying (XGBoost Booster returns only one class probability)
    prob = loaded_model.predict(dmatrix_new)

    # Compute SHAP values
    shap_values = explainer.shap_values(new_row)
    plot = shap.plots.bar(shap_values, max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)

    plt.tight_layout()
    local_plot = plt.gcf()
    plt.rcParams['figure.figsize'] = (6, 4)
    plt.close()

    return {"Leave": 1 - float(prob[0]), "Stay": float(prob[0])}, local_plot

# Create the UI
title = "**Mod 3 Team 5: Employee Turnover Predictor**"
description1 = """
This app takes six inputs about employees' satisfaction with different aspects of their work (such as work-life balance, ...) 
and predicts whether the employee intends to stay with the employer or leave. The outputs include:
1. The predicted probability of staying or leaving.
2. A SHAP plot that visualizes how different factors impact the prediction.
"""

description2 = """
To use the app, adjust the values of the six employee satisfaction factors and click **Analyze**. ✨ 
""" 

with gr.Blocks(title=title) as demo:
    gr.Markdown(f"## {title}")
    gr.Markdown(description1)
    gr.Markdown("""---""")
    gr.Markdown(description2)
    gr.Markdown("""---""")

    with gr.Row():        
        with gr.Column():
            SupportiveGM = gr.Slider(label="Supportive GM Score", minimum=1, maximum=5, value=4, step=0.1)
            Merit = gr.Slider(label="Merit Score", minimum=1, maximum=5, value=4, step=0.1)
            LearningDevelopment = gr.Slider(label="Learning & Development Score", minimum=1, maximum=5, value=4, step=0.1)
            WorkEnvironment = gr.Slider(label="Work Environment Score", minimum=1, maximum=5, value=4, step=0.1)
            Engagement = gr.Slider(label="Engagement Score", minimum=1, maximum=5, value=4, step=0.1)
            WellBeing = gr.Slider(label="Well-Being Score", minimum=1, maximum=5, value=4, step=0.1)
            submit_btn = gr.Button("Analyze")
        
        with gr.Column(visible=True, scale=1, min_width=600) as output_col:
            label = gr.Label(label="Predicted Turnover Probability")
            local_plot = gr.Plot(label="SHAP Plot:")

            submit_btn.click(
                main_func,
                [SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing],
                [label, local_plot], api_name="Employee_Turnover"
            )
    
    gr.Markdown("### Click on an example below to see how it works:")
    gr.Examples([[4, 4, 4, 4, 5, 5], [5, 4, 5, 4, 4, 4]], 
                [SupportiveGM, Merit, LearningDevelopment, WorkEnvironment, Engagement, WellBeing], 
                [label, local_plot], main_func, cache_examples=True)

demo.launch()