Mod3Team12-v2 / app.py
bs3va's picture
Update app.py
4bad5a8 verified
raw
history blame
3.36 kB
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# load the model from disk
loaded_model = pickle.load(open("filtered_xgb_model.pkl", 'rb'))
# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
# Create the main function for server
def main_func(GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1):
new_row = pd.DataFrame.from_dict({
'GM3': GM3,
'WorkEnv3': WorkEnv3,
'WellBeing2': WellBeing2,
'GM2': GM2,
'JobSecurity': JobSecurity,
'WellBeing1': WellBeing1
}, orient='index').transpose()
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False)
plt.tight_layout()
local_plot = plt.gcf()
plt.rcParams['figure.figsize'] = 6,4
plt.close()
return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot
# Create the UI
title = "**Employee Turnover Predictor & Interpreter** πŸͺ"
description1 = """
This app predicts whether an employee is likely to stay or leave based on selected workplace factors.
It also provides a SHAP visualization to show how each factor influences the prediction.
"""
description2 = """
To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. ✨
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
# gr.Markdown("""![marketing](types-of-employee-turnover.jpg)""")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
with gr.Row():
with gr.Column():
GM3 = gr.Slider(label="GM3", minimum=1, maximum=5, value=4, step=0.1)
WorkEnv3 = gr.Slider(label="Work Environment 3", minimum=1, maximum=5, value=4, step=0.1)
WellBeing2 = gr.Slider(label="Well-Being 2", minimum=1, maximum=5, value=4, step=0.1)
GM2 = gr.Slider(label="GM2", minimum=1, maximum=5, value=4, step=0.1)
JobSecurity = gr.Slider(label="Job Security", minimum=1, maximum=5, value=4, step=0.1)
WellBeing1 = gr.Slider(label="Well-Being 1", minimum=1, maximum=5, value=4, step=0.1)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True, scale=1, min_width=600) as output_col:
label = gr.Label(label="Predicted Intent")
local_plot = gr.Plot(label='SHAP Analysis')
submit_btn.click(
main_func,
[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1],
[label, local_plot], api_name="IntentToStay_Predictor"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]],
[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1],
[label, local_plot], main_func, cache_examples=True)
demo.launch()