Spaces:
Running
Running
import pickle | |
import pandas as pd | |
import shap | |
from shap.plots._force_matplotlib import draw_additive_plot | |
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
# load the model from disk | |
loaded_model = pickle.load(open("filtered_xgb_model.pkl", 'rb')) | |
# Setup SHAP | |
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
# Create the main function for server | |
def main_func(GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1): | |
new_row = pd.DataFrame.from_dict({ | |
'GM3': GM3, | |
'WorkEnv3': WorkEnv3, | |
'WellBeing2': WellBeing2, | |
'GM2': GM2, | |
'JobSecurity': JobSecurity, | |
'WellBeing1': WellBeing1 | |
}, orient='index').transpose() | |
prob = loaded_model.predict_proba(new_row) | |
shap_values = explainer(new_row) | |
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) | |
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) | |
plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) | |
plt.tight_layout() | |
local_plot = plt.gcf() | |
plt.rcParams['figure.figsize'] = 6,4 | |
plt.close() | |
return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot | |
# Create the UI | |
title = "**Employee Turnover Predictor & Interpreter** πͺ" | |
description1 = """ | |
This app predicts whether an employee is likely to stay or leave based on selected workplace factors. | |
It also provides a SHAP visualization to show how each factor influences the prediction. | |
""" | |
description2 = """ | |
To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. β¨ | |
""" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"## {title}") | |
# gr.Markdown("""""") | |
gr.Markdown(description1) | |
gr.Markdown("""---""") | |
gr.Markdown(description2) | |
gr.Markdown("""---""") | |
with gr.Row(): | |
with gr.Column(): | |
GM3 = gr.Slider(label="GM3", minimum=1, maximum=5, value=4, step=0.1) | |
WorkEnv3 = gr.Slider(label="Work Environment 3", minimum=1, maximum=5, value=4, step=0.1) | |
WellBeing2 = gr.Slider(label="Well-Being 2", minimum=1, maximum=5, value=4, step=0.1) | |
GM2 = gr.Slider(label="GM2", minimum=1, maximum=5, value=4, step=0.1) | |
JobSecurity = gr.Slider(label="Job Security", minimum=1, maximum=5, value=4, step=0.1) | |
WellBeing1 = gr.Slider(label="Well-Being 1", minimum=1, maximum=5, value=4, step=0.1) | |
submit_btn = gr.Button("Analyze") | |
with gr.Column(visible=True, scale=1, min_width=600) as output_col: | |
label = gr.Label(label="Predicted Intent") | |
local_plot = gr.Plot(label='SHAP Analysis') | |
submit_btn.click( | |
main_func, | |
[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], | |
[label, local_plot], api_name="IntentToStay_Predictor" | |
) | |
gr.Markdown("### Click on any of the examples below to see how it works:") | |
gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]], | |
[GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], | |
[label, local_plot], main_func, cache_examples=True) | |
demo.launch() |