import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("filtered_xgb_model.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1): new_row = pd.DataFrame.from_dict({ 'GM3': GM3, 'WorkEnv3': WorkEnv3, 'WellBeing2': WellBeing2, 'GM2': GM2, 'JobSecurity': JobSecurity, 'WellBeing1': WellBeing1 }, orient='index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.rcParams['figure.figsize'] = 6,4 plt.close() return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Employee Turnover Predictor & Interpreter** 🪐" description1 = """ This app predicts whether an employee is likely to stay or leave based on selected workplace factors. It also provides a SHAP visualization to show how each factor influences the prediction. """ description2 = """ To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. ✨ """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") # gr.Markdown("""![marketing](types-of-employee-turnover.jpg)""") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") with gr.Row(): with gr.Column(): GM3 = gr.Slider(label="GM3", minimum=1, maximum=5, value=4, step=0.1) WorkEnv3 = gr.Slider(label="Work Environment 3", minimum=1, maximum=5, value=4, step=0.1) WellBeing2 = gr.Slider(label="Well-Being 2", minimum=1, maximum=5, value=4, step=0.1) GM2 = gr.Slider(label="GM2", minimum=1, maximum=5, value=4, step=0.1) JobSecurity = gr.Slider(label="Job Security", minimum=1, maximum=5, value=4, step=0.1) WellBeing1 = gr.Slider(label="Well-Being 1", minimum=1, maximum=5, value=4, step=0.1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True, scale=1, min_width=600) as output_col: label = gr.Label(label="Predicted Intent") local_plot = gr.Plot(label='SHAP Analysis') submit_btn.click( main_func, [GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], [label, local_plot], api_name="IntentToStay_Predictor" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]], [GM3, WorkEnv3, WellBeing2, GM2, JobSecurity, WellBeing1], [label, local_plot], main_func, cache_examples=True) demo.launch()