USER-GNEXUSES commited on
Commit
bbd1d16
·
verified ·
1 Parent(s): 2ad789c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -83
app.py CHANGED
@@ -1,92 +1,69 @@
1
- # RPA Business Analyst AI Agent Implementation
2
- # pip install pm4py neo4j rasa opencv-python pytesseract tensorflow scikit-learn
 
 
 
 
3
 
4
- # imports
5
- import pm4py
6
- import cv2
7
- from mss import mss
8
- import pytesseract
9
- import spacy
10
- from neo4j import GraphDatabase
11
- import numpy as np
12
- import pandas as pd
13
- import json
14
- import tensorflow as tf
15
- from sklearn.ensemble import GradientBoostingRegressor
16
 
17
- # Process Mining Module
18
- def discover_process(event_log_path, algorithm="inductive"):
19
- log = pm4py.read_xes(event_log_path)
20
- if algorithm == "inductive":
21
- model = pm4py.discover_petri_net_inductive(log)
22
- else:
23
- model = pm4py.discover_petri_net_alpha(log)
24
- pm4py.view_petri_net(*model)
25
- return model
 
26
 
27
- # Computer Vision Module
28
- class ScreenCapture:
29
- def capture_screen(self):
30
- with mss() as sct:
31
- monitor = {"top": 0, "left": 0, "width": 1920, "height": 1080}
32
- img = sct.grab(monitor)
33
- return cv2.cvtColor(np.array(img), cv2.COLOR_BGRA2BGR)
34
-
35
- def extract_text(self, image):
36
- return pytesseract.image_to_string(image)
 
 
 
 
37
 
38
- # NLP Module
39
- nlp_model = spacy.load("en_core_web_sm")
40
- def parse_workflows(text):
41
- doc = nlp_model(text)
42
- return [ent.text for ent in doc.ents if ent.label_ == "WORKFLOW"]
43
 
44
- # Requirements Analysis Module
45
- driver = GraphDatabase.driver("bolt://localhost", auth=None)
46
- def create_process_node(process_name, process_description):
47
- with driver.session() as session:
48
- session.run(
49
- "MERGE (p:Process {name: $name}) SET p.description = $description",
50
- name=process_name,
51
- description=process_description
52
- )
53
 
54
- # Automation Opportunity Detector
55
- class SuitabilityPredictor:
56
- def __init__(self, model_path):
57
- self.model = tf.keras.models.load_model(model_path)
58
-
59
- def predict(self, features):
60
- return self.model.predict(features)[0][0]
61
 
62
- def automate_suitability(process_data, model_path):
63
- predictor = SuitabilityPredictor(model_path)
64
- return predictor.predict(process_data)
 
 
 
65
 
66
- # Main Execution Block
67
- if __name__ == "__main__":
68
- # Load Configuration
69
- with open("config.json") as f:
70
- config = json.load(f)
71
-
72
- # Process Mining
73
- event_log_path = "data/event_logs.xes"
74
- process_model = discover_process(event_log_path, config["process_mining"]["algorithm"])
75
-
76
- # Computer Vision
77
- screen_cap = ScreenCapture()
78
- screen_img = screen_cap.capture_screen()
79
- screen_text = screen_cap.extract_text(screen_img)
80
-
81
- # NLP
82
- workflows = parse_workflows(screen_text)
83
-
84
- # Knowledge Graph
85
- create_process_node("Invoice Processing", "Processes vendor invoices")
86
-
87
- # ML Suitability
88
- model_path = config["ml"]["model_path"]
89
- suitability_score = automate_suitability(process_data, model_path)
90
 
91
- # Recommendation Engine
92
- print(f"Automation Suitability: {suitability_score:.2f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
2
+ import datetime
3
+ import requests
4
+ import pytz
5
+ import yaml
6
+ from tools.final_answer import FinalAnswerTool
7
 
8
+ from Gradio_UI import GradioUI
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ # Below is an example of a tool that does nothing. Amaze us with your creativity !
11
+ @tool
12
+ def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
13
+ #Keep this format for the description / args / args description but feel free to modify the tool
14
+ """A tool that does nothing yet
15
+ Args:
16
+ arg1: the first argument
17
+ arg2: the second argument
18
+ """
19
+ return "What magic will you build ?"
20
 
21
+ @tool
22
+ def get_current_time_in_timezone(timezone: str) -> str:
23
+ """A tool that fetches the current local time in a specified timezone.
24
+ Args:
25
+ timezone: A string representing a valid timezone (e.g., 'America/New_York').
26
+ """
27
+ try:
28
+ # Create timezone object
29
+ tz = pytz.timezone(timezone)
30
+ # Get current time in that timezone
31
+ local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
32
+ return f"The current local time in {timezone} is: {local_time}"
33
+ except Exception as e:
34
+ return f"Error fetching time for timezone '{timezone}': {str(e)}"
35
 
 
 
 
 
 
36
 
37
+ final_answer = FinalAnswerTool()
 
 
 
 
 
 
 
 
38
 
39
+ # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
40
+ # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
 
 
 
 
 
41
 
42
+ model = HfApiModel(
43
+ max_tokens=2096,
44
+ temperature=0.5,
45
+ model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
46
+ custom_role_conversions=None,
47
+ )
48
 
49
+
50
+ # Import tool from Hub
51
+ image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
52
+
53
+ with open("prompts.yaml", 'r') as stream:
54
+ prompt_templates = yaml.safe_load(stream)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ agent = CodeAgent(
57
+ model=model,
58
+ tools=[final_answer], ## add your tools here (don't remove final answer)
59
+ max_steps=6,
60
+ verbosity_level=1,
61
+ grammar=None,
62
+ planning_interval=None,
63
+ name=None,
64
+ description=None,
65
+ prompt_templates=prompt_templates
66
+ )
67
+
68
+
69
+ GradioUI(agent).launch()