Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,124 +1,92 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
# Preprocess the text
|
11 |
-
def preprocess_text(text):
|
12 |
-
tokenizer = English()
|
13 |
-
tokens = tokenizer(text)
|
14 |
-
processed_text = [token.lemma_ for token in tokens if not token.is_stop]
|
15 |
-
return ' '.join(processed_text)
|
16 |
-
|
17 |
-
processed_desc = preprocess_text(process_description)
|
18 |
-
print(processed_desc)
|
19 |
-
|
20 |
-
|
21 |
import spacy
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
}
|
106 |
-
response = requests.post(f"{uipath_uri}/api/workflows", headers=headers, data=workflow)
|
107 |
-
return response.json()
|
108 |
-
|
109 |
-
# Example API call
|
110 |
-
uipath_uri = "https://your-uipath-orchestrator-url"
|
111 |
-
api_key = "your-api-key"
|
112 |
-
|
113 |
-
response = execute_workflow(workflow, uipath_uri, api_key)
|
114 |
-
print("Workflow Execution Response:", response)
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
1 |
+
# RPA Business Analyst AI Agent Implementation
|
2 |
+
# pip install pm4py neo4j rasa opencv-python pytesseract tensorflow scikit-learn
|
3 |
+
|
4 |
+
# imports
|
5 |
+
import pm4py
|
6 |
+
import cv2
|
7 |
+
from mss import mss
|
8 |
+
import pytesseract
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import spacy
|
10 |
+
from neo4j import GraphDatabase
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import json
|
14 |
+
import tensorflow as tf
|
15 |
+
from sklearn.ensemble import GradientBoostingRegressor
|
16 |
+
|
17 |
+
# Process Mining Module
|
18 |
+
def discover_process(event_log_path, algorithm="inductive"):
|
19 |
+
log = pm4py.read_xes(event_log_path)
|
20 |
+
if algorithm == "inductive":
|
21 |
+
model = pm4py.discover_petri_net_inductive(log)
|
22 |
+
else:
|
23 |
+
model = pm4py.discover_petri_net_alpha(log)
|
24 |
+
pm4py.view_petri_net(*model)
|
25 |
+
return model
|
26 |
+
|
27 |
+
# Computer Vision Module
|
28 |
+
class ScreenCapture:
|
29 |
+
def capture_screen(self):
|
30 |
+
with mss() as sct:
|
31 |
+
monitor = {"top": 0, "left": 0, "width": 1920, "height": 1080}
|
32 |
+
img = sct.grab(monitor)
|
33 |
+
return cv2.cvtColor(np.array(img), cv2.COLOR_BGRA2BGR)
|
34 |
+
|
35 |
+
def extract_text(self, image):
|
36 |
+
return pytesseract.image_to_string(image)
|
37 |
+
|
38 |
+
# NLP Module
|
39 |
+
nlp_model = spacy.load("en_core_web_sm")
|
40 |
+
def parse_workflows(text):
|
41 |
+
doc = nlp_model(text)
|
42 |
+
return [ent.text for ent in doc.ents if ent.label_ == "WORKFLOW"]
|
43 |
+
|
44 |
+
# Requirements Analysis Module
|
45 |
+
driver = GraphDatabase.driver("bolt://localhost", auth=None)
|
46 |
+
def create_process_node(process_name, process_description):
|
47 |
+
with driver.session() as session:
|
48 |
+
session.run(
|
49 |
+
"MERGE (p:Process {name: $name}) SET p.description = $description",
|
50 |
+
name=process_name,
|
51 |
+
description=process_description
|
52 |
+
)
|
53 |
+
|
54 |
+
# Automation Opportunity Detector
|
55 |
+
class SuitabilityPredictor:
|
56 |
+
def __init__(self, model_path):
|
57 |
+
self.model = tf.keras.models.load_model(model_path)
|
58 |
+
|
59 |
+
def predict(self, features):
|
60 |
+
return self.model.predict(features)[0][0]
|
61 |
+
|
62 |
+
def automate_suitability(process_data, model_path):
|
63 |
+
predictor = SuitabilityPredictor(model_path)
|
64 |
+
return predictor.predict(process_data)
|
65 |
+
|
66 |
+
# Main Execution Block
|
67 |
+
if __name__ == "__main__":
|
68 |
+
# Load Configuration
|
69 |
+
with open("config.json") as f:
|
70 |
+
config = json.load(f)
|
71 |
+
|
72 |
+
# Process Mining
|
73 |
+
event_log_path = "data/event_logs.xes"
|
74 |
+
process_model = discover_process(event_log_path, config["process_mining"]["algorithm"])
|
75 |
+
|
76 |
+
# Computer Vision
|
77 |
+
screen_cap = ScreenCapture()
|
78 |
+
screen_img = screen_cap.capture_screen()
|
79 |
+
screen_text = screen_cap.extract_text(screen_img)
|
80 |
+
|
81 |
+
# NLP
|
82 |
+
workflows = parse_workflows(screen_text)
|
83 |
+
|
84 |
+
# Knowledge Graph
|
85 |
+
create_process_node("Invoice Processing", "Processes vendor invoices")
|
86 |
+
|
87 |
+
# ML Suitability
|
88 |
+
model_path = config["ml"]["model_path"]
|
89 |
+
suitability_score = automate_suitability(process_data, model_path)
|
90 |
+
|
91 |
+
# Recommendation Engine
|
92 |
+
print(f"Automation Suitability: {suitability_score:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|