USER-GNEXUSES commited on
Commit
2ad789c
·
verified ·
1 Parent(s): 1748d49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -123
app.py CHANGED
@@ -1,124 +1,92 @@
1
- import nltk
2
- from spacy.lang.en import English
3
-
4
- # Example input: process description
5
- process_description = """
6
- The accounts payable team receives invoices via email.
7
- They verify the invoice details, check for duplicates, and approve payment.
8
- """
9
-
10
- # Preprocess the text
11
- def preprocess_text(text):
12
- tokenizer = English()
13
- tokens = tokenizer(text)
14
- processed_text = [token.lemma_ for token in tokens if not token.is_stop]
15
- return ' '.join(processed_text)
16
-
17
- processed_desc = preprocess_text(process_description)
18
- print(processed_desc)
19
-
20
-
21
  import spacy
22
-
23
- nlp = spacy.load('en_core_web_sm')
24
-
25
- def extract_entities(text):
26
- doc = nlp(text)
27
- entities = [(ent.text, ent.label_) for ent in doc.ents]
28
- return entities
29
-
30
- entities = extract_entities(process_description)
31
- print("Extracted Entities:", entities)
32
-
33
-
34
- from sklearn.feature_extraction.text import TfidfVectorizer
35
- from sklearn.svm import SVC
36
-
37
- # Sample training data (simplified)
38
- X = [
39
- "receive invoices via email", # Automatable
40
- "verify invoice details", # Automatable
41
- "approve payment manually" # Non-automatable
42
- ]
43
- y = [1, 1, 0]
44
-
45
- # Feature extraction
46
- vectorizer = TfidfVectorizer()
47
- X_vec = vectorizer.fit_transform(X)
48
-
49
- # Train a simple SVM
50
- model = SVC()
51
- model.fit(X_vec, y)
52
-
53
- # Predict automation feasibility
54
- def predict_automation_feasibility(text):
55
- text_vec = vectorizer.transform([text])
56
- return model.predict(text_vec)[0]
57
-
58
- print(predict_automation_feasibility("check for duplicates")) # Output: 1 (Automatable)
59
-
60
-
61
- # Example workflow for UiPath
62
- def generate_uipath_workflow(tasks):
63
- workflow = f"""
64
- <Workflow [ContentUIVersion='1.0.0.0' TargetPlatform='.NETFramework,Version=v6.0' TargetRuntime='V6_0' HostRuntimeERO='255,255'>
65
- <Variable Type='Object' Name='invoiceDetails' />
66
- {''.join([f"<Variable Type='Object' Name='task_{task}' />" for task in tasks])}
67
- <Sequence>
68
- {''.join([f"<Activitysqueeze Code='GeneratedActivity严格落实任务_{task}' />" for task in tasks])}
69
- </Sequence>
70
- </Workflow>
71
- """
72
- return workflow
73
-
74
- tasks = ["receive_invoices", "verify_details", "approve_payment"]
75
- workflow = generate_uipath_workflow(tasks)
76
- print(workflow)
77
-
78
-
79
- # Example workflow for UiPath
80
- def generate_uipath_workflow(tasks):
81
- workflow = f"""
82
- <Workflow [ContentUIVersion='1.0.0.0' TargetPlatform='.NETFramework,Version=v6.0' TargetRuntime='V6_0' HostRuntimeERO='255,255'>
83
- <Variable Type='Object' Name='invoiceDetails' />
84
- {''.join([f"<Variable Type='Object' Name='task_{task}' />" for task in tasks])}
85
- <Sequence>
86
- {''.join([f"<Activitysqueeze Code='GeneratedActivity严格落实任务_{task}' />" for task in tasks])}
87
- </Sequence>
88
- </Workflow>
89
- """
90
- return workflow
91
-
92
- tasks = ["receive_invoices", "verify_details", "approve_payment"]
93
- workflow = generate_uipath_workflow(tasks)
94
- print(workflow)
95
-
96
-
97
-
98
- # Example: Connect to UiPath Orchestrator API
99
- import requests
100
-
101
- def execute_workflow(workflow, uipath_uri, api_key):
102
- headers = {
103
- "Authorization": f"Bearer {api_key}",
104
- "Content-Type": "application/xml"
105
- }
106
- response = requests.post(f"{uipath_uri}/api/workflows", headers=headers, data=workflow)
107
- return response.json()
108
-
109
- # Example API call
110
- uipath_uri = "https://your-uipath-orchestrator-url"
111
- api_key = "your-api-key"
112
-
113
- response = execute_workflow(workflow, uipath_uri, api_key)
114
- print("Workflow Execution Response:", response)
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
-
123
-
124
-
 
1
+ # RPA Business Analyst AI Agent Implementation
2
+ # pip install pm4py neo4j rasa opencv-python pytesseract tensorflow scikit-learn
3
+
4
+ # imports
5
+ import pm4py
6
+ import cv2
7
+ from mss import mss
8
+ import pytesseract
 
 
 
 
 
 
 
 
 
 
 
 
9
  import spacy
10
+ from neo4j import GraphDatabase
11
+ import numpy as np
12
+ import pandas as pd
13
+ import json
14
+ import tensorflow as tf
15
+ from sklearn.ensemble import GradientBoostingRegressor
16
+
17
+ # Process Mining Module
18
+ def discover_process(event_log_path, algorithm="inductive"):
19
+ log = pm4py.read_xes(event_log_path)
20
+ if algorithm == "inductive":
21
+ model = pm4py.discover_petri_net_inductive(log)
22
+ else:
23
+ model = pm4py.discover_petri_net_alpha(log)
24
+ pm4py.view_petri_net(*model)
25
+ return model
26
+
27
+ # Computer Vision Module
28
+ class ScreenCapture:
29
+ def capture_screen(self):
30
+ with mss() as sct:
31
+ monitor = {"top": 0, "left": 0, "width": 1920, "height": 1080}
32
+ img = sct.grab(monitor)
33
+ return cv2.cvtColor(np.array(img), cv2.COLOR_BGRA2BGR)
34
+
35
+ def extract_text(self, image):
36
+ return pytesseract.image_to_string(image)
37
+
38
+ # NLP Module
39
+ nlp_model = spacy.load("en_core_web_sm")
40
+ def parse_workflows(text):
41
+ doc = nlp_model(text)
42
+ return [ent.text for ent in doc.ents if ent.label_ == "WORKFLOW"]
43
+
44
+ # Requirements Analysis Module
45
+ driver = GraphDatabase.driver("bolt://localhost", auth=None)
46
+ def create_process_node(process_name, process_description):
47
+ with driver.session() as session:
48
+ session.run(
49
+ "MERGE (p:Process {name: $name}) SET p.description = $description",
50
+ name=process_name,
51
+ description=process_description
52
+ )
53
+
54
+ # Automation Opportunity Detector
55
+ class SuitabilityPredictor:
56
+ def __init__(self, model_path):
57
+ self.model = tf.keras.models.load_model(model_path)
58
+
59
+ def predict(self, features):
60
+ return self.model.predict(features)[0][0]
61
+
62
+ def automate_suitability(process_data, model_path):
63
+ predictor = SuitabilityPredictor(model_path)
64
+ return predictor.predict(process_data)
65
+
66
+ # Main Execution Block
67
+ if __name__ == "__main__":
68
+ # Load Configuration
69
+ with open("config.json") as f:
70
+ config = json.load(f)
71
+
72
+ # Process Mining
73
+ event_log_path = "data/event_logs.xes"
74
+ process_model = discover_process(event_log_path, config["process_mining"]["algorithm"])
75
+
76
+ # Computer Vision
77
+ screen_cap = ScreenCapture()
78
+ screen_img = screen_cap.capture_screen()
79
+ screen_text = screen_cap.extract_text(screen_img)
80
+
81
+ # NLP
82
+ workflows = parse_workflows(screen_text)
83
+
84
+ # Knowledge Graph
85
+ create_process_node("Invoice Processing", "Processes vendor invoices")
86
+
87
+ # ML Suitability
88
+ model_path = config["ml"]["model_path"]
89
+ suitability_score = automate_suitability(process_data, model_path)
90
+
91
+ # Recommendation Engine
92
+ print(f"Automation Suitability: {suitability_score:.2f}")