Spaces:
Sleeping
Sleeping
# RPA Business Analyst AI Agent Implementation | |
# pip install pm4py neo4j rasa opencv-python pytesseract tensorflow scikit-learn | |
# imports | |
import pm4py | |
import cv2 | |
from mss import mss | |
import pytesseract | |
import spacy | |
from neo4j import GraphDatabase | |
import numpy as np | |
import pandas as pd | |
import json | |
import tensorflow as tf | |
from sklearn.ensemble import GradientBoostingRegressor | |
# Process Mining Module | |
def discover_process(event_log_path, algorithm="inductive"): | |
log = pm4py.read_xes(event_log_path) | |
if algorithm == "inductive": | |
model = pm4py.discover_petri_net_inductive(log) | |
else: | |
model = pm4py.discover_petri_net_alpha(log) | |
pm4py.view_petri_net(*model) | |
return model | |
# Computer Vision Module | |
class ScreenCapture: | |
def capture_screen(self): | |
with mss() as sct: | |
monitor = {"top": 0, "left": 0, "width": 1920, "height": 1080} | |
img = sct.grab(monitor) | |
return cv2.cvtColor(np.array(img), cv2.COLOR_BGRA2BGR) | |
def extract_text(self, image): | |
return pytesseract.image_to_string(image) | |
# NLP Module | |
nlp_model = spacy.load("en_core_web_sm") | |
def parse_workflows(text): | |
doc = nlp_model(text) | |
return [ent.text for ent in doc.ents if ent.label_ == "WORKFLOW"] | |
# Requirements Analysis Module | |
driver = GraphDatabase.driver("bolt://localhost", auth=None) | |
def create_process_node(process_name, process_description): | |
with driver.session() as session: | |
session.run( | |
"MERGE (p:Process {name: $name}) SET p.description = $description", | |
name=process_name, | |
description=process_description | |
) | |
# Automation Opportunity Detector | |
class SuitabilityPredictor: | |
def __init__(self, model_path): | |
self.model = tf.keras.models.load_model(model_path) | |
def predict(self, features): | |
return self.model.predict(features)[0][0] | |
def automate_suitability(process_data, model_path): | |
predictor = SuitabilityPredictor(model_path) | |
return predictor.predict(process_data) | |
# Main Execution Block | |
if __name__ == "__main__": | |
# Load Configuration | |
with open("config.json") as f: | |
config = json.load(f) | |
# Process Mining | |
event_log_path = "data/event_logs.xes" | |
process_model = discover_process(event_log_path, config["process_mining"]["algorithm"]) | |
# Computer Vision | |
screen_cap = ScreenCapture() | |
screen_img = screen_cap.capture_screen() | |
screen_text = screen_cap.extract_text(screen_img) | |
# NLP | |
workflows = parse_workflows(screen_text) | |
# Knowledge Graph | |
create_process_node("Invoice Processing", "Processes vendor invoices") | |
# ML Suitability | |
model_path = config["ml"]["model_path"] | |
suitability_score = automate_suitability(process_data, model_path) | |
# Recommendation Engine | |
print(f"Automation Suitability: {suitability_score:.2f}") | |