Tzktz's picture
Upload 7664 files
6fc683c verified
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CTRL model."""
import logging
import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from .configuration_ctrl import CTRLConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
from .modeling_utils import Conv1D, PreTrainedModel
logger = logging.getLogger(__name__)
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP = {"ctrl": "https://storage.googleapis.com/sf-ctrl/pytorch/seqlen256_v1.bin"}
def angle_defn(pos, i, d_model_size):
angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size)
return pos * angle_rates
def positional_encoding(position, d_model_size, dtype):
# create the sinusoidal pattern for the positional encoding
angle_rads = angle_defn(
torch.arange(position, dtype=dtype).unsqueeze(1),
torch.arange(d_model_size, dtype=dtype).unsqueeze(0),
d_model_size,
)
sines = torch.sin(angle_rads[:, 0::2])
cosines = torch.cos(angle_rads[:, 1::2])
pos_encoding = torch.cat([sines, cosines], dim=-1)
return pos_encoding
def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None):
# calculate attention
matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2))
dk = k.shape[-1]
scaled_attention_logits = matmul_qk / np.sqrt(dk)
if mask is not None:
nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1)
scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4
if attention_mask is not None:
# Apply the attention mask
scaled_attention_logits = scaled_attention_logits + attention_mask
attention_weights = torch.softmax(scaled_attention_logits, dim=-1)
# Mask heads if we want to
if head_mask is not None:
attention_weights = attention_weights * head_mask
output = torch.matmul(attention_weights, v)
return output, attention_weights
class MultiHeadAttention(torch.nn.Module):
def __init__(self, d_model_size, num_heads, output_attentions=False):
super().__init__()
self.output_attentions = output_attentions
self.num_heads = num_heads
self.d_model_size = d_model_size
self.depth = int(d_model_size / self.num_heads)
self.Wq = torch.nn.Linear(d_model_size, d_model_size)
self.Wk = torch.nn.Linear(d_model_size, d_model_size)
self.Wv = torch.nn.Linear(d_model_size, d_model_size)
self.dense = torch.nn.Linear(d_model_size, d_model_size)
def split_into_heads(self, x, batch_size):
x = x.reshape(batch_size, -1, self.num_heads, self.depth)
return x.permute([0, 2, 1, 3])
def forward(self, v, k, q, mask, layer_past=None, attention_mask=None, head_mask=None):
batch_size = q.shape[0]
q = self.Wq(q)
k = self.Wk(k)
v = self.Wv(v)
q = self.split_into_heads(q, batch_size)
k = self.split_into_heads(k, batch_size)
v = self.split_into_heads(v, batch_size)
if layer_past is not None:
past_key, past_value = layer_past[0], layer_past[1]
k = torch.cat((past_key, k), dim=-2)
v = torch.cat((past_value, v), dim=-2)
present = torch.stack((k, v))
output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask)
scaled_attention = output[0].permute([0, 2, 1, 3])
attn = output[1]
original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size)
output = self.dense(original_size_attention)
outputs = (output, present)
if self.output_attentions:
outputs = outputs + (attn,)
return outputs
def point_wise_feed_forward_network(d_model_size, dff):
return torch.nn.Sequential(torch.nn.Linear(d_model_size, dff), torch.nn.ReLU(), torch.nn.Linear(dff, d_model_size))
class EncoderLayer(torch.nn.Module):
def __init__(self, d_model_size, num_heads, dff, rate=0.1, output_attentions=False):
super().__init__()
self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads, output_attentions)
self.ffn = point_wise_feed_forward_network(d_model_size, dff)
self.layernorm1 = torch.nn.LayerNorm(d_model_size, eps=1e-6)
self.layernorm2 = torch.nn.LayerNorm(d_model_size, eps=1e-6)
self.dropout1 = torch.nn.Dropout(rate)
self.dropout2 = torch.nn.Dropout(rate)
def forward(self, x, mask, layer_past=None, attention_mask=None, head_mask=None):
normed = self.layernorm1(x)
attn_outputs = self.multi_head_attention(
normed, normed, normed, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask
)
attn_output = attn_outputs[0]
attn_output = self.dropout1(attn_output)
out1 = x + attn_output
out2 = self.layernorm2(out1)
ffn_output = self.ffn(out2)
ffn_output = self.dropout2(ffn_output)
out2 = out1 + ffn_output
outputs = (out2,) + attn_outputs[1:]
return outputs
class CTRLPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = CTRLConfig
pretrained_model_archive_map = CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix = "transformer"
def _init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
CTRL_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Parameters:
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
CTRL_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`transformers.CTRLTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.encode_plus` for details.
`What are input IDs? <../glossary.html#input-ids>`__
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
corresponds to a `sentence B` token
`What are token type IDs? <../glossary.html#token-type-ids>`_
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`_
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
@add_start_docstrings(
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.",
CTRL_START_DOCSTRING,
)
class CTRLModel(CTRLPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.output_hidden_states = config.output_hidden_states
self.output_attentions = config.output_attentions
self.output_past = config.output_past
self.d_model_size = config.n_embd
self.num_layers = config.n_layer
self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float)
self.w = nn.Embedding(config.vocab_size, config.n_embd)
self.dropout = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList(
[
EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop, config.output_attentions)
for _ in range(config.n_layer)
]
)
self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.init_weights()
def get_input_embeddings(self):
return self.w
def set_input_embeddings(self, new_embeddings):
self.w = new_embeddings
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
@add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
past=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
):
r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the last layer of the model.
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
Contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
from transformers import CTRLTokenizer, CTRLModel
import torch
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = CTRLModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past is None:
past_length = 0
past = [None] * len(self.h)
else:
past_length = past[0][0].size(-2)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# Attention mask.
if attention_mask is not None:
attention_mask = attention_mask.view(-1, input_shape[-1])
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = (
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
) # We can specify head_mask for each layer
head_mask = head_mask.to(
dtype=next(self.parameters()).dtype
) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.n_layer
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
token_type_embeds = self.w(token_type_ids)
token_type_embeds *= np.sqrt(self.d_model_size)
else:
token_type_embeds = 0
position_ids = position_ids.view(-1, input_shape[-1])
if inputs_embeds is None:
inputs_embeds = self.w(input_ids)
# inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
seq_len = input_shape[-1]
mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(inputs_embeds.device)
inputs_embeds *= np.sqrt(self.d_model_size)
pos_embeds = self.pos_encoding[position_ids, :].to(inputs_embeds.device)
hidden_states = inputs_embeds + pos_embeds + token_type_embeds
hidden_states = self.dropout(hidden_states)
output_shape = input_shape + (inputs_embeds.size(-1),)
presents = ()
all_hidden_states = ()
all_attentions = []
for i, (h, layer_past) in enumerate(zip(self.h, past)):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
outputs = h(
hidden_states, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i]
)
hidden_states, present = outputs[:2]
if self.output_past:
presents = presents + (present,)
if self.output_attentions:
all_attentions.append(outputs[2])
hidden_states = self.layernorm(hidden_states)
hidden_states = hidden_states.view(*output_shape)
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_past:
outputs = outputs + (presents,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
outputs = outputs + (all_attentions,)
return outputs
@add_start_docstrings(
"""The CTRL Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """,
CTRL_START_DOCSTRING,
)
class CTRLLMHeadModel(CTRLPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = CTRLModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)
self.init_weights()
def get_output_embeddings(self):
return self.lm_head
def prepare_inputs_for_generation(self, input_ids, past, **kwargs):
# only last token for inputs_ids if past is defined in kwargs
if past:
input_ids = input_ids[:, -1].unsqueeze(-1)
return {"input_ids": input_ids, "past": past}
@add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
past=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for language modeling.
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
Indices are selected in ``[-100, 0, ..., config.vocab_size]``
All labels set to ``-100`` are ignored (masked), the loss is only
computed for labels in ``[0, ..., config.vocab_size]``
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when ``labels`` is provided)
Language modeling loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
Contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
import torch
from transformers import CTRLTokenizer, CTRLLMHeadModel
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = CTRLLMHeadModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
"""
transformer_outputs = self.transformer(
input_ids,
past=past,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
outputs = (lm_logits,) + transformer_outputs[1:]
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions)