Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 Salesforce and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch CTRL model.""" | |
import logging | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss | |
from .configuration_ctrl import CTRLConfig | |
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable | |
from .modeling_utils import Conv1D, PreTrainedModel | |
logger = logging.getLogger(__name__) | |
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP = {"ctrl": "https://storage.googleapis.com/sf-ctrl/pytorch/seqlen256_v1.bin"} | |
def angle_defn(pos, i, d_model_size): | |
angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size) | |
return pos * angle_rates | |
def positional_encoding(position, d_model_size, dtype): | |
# create the sinusoidal pattern for the positional encoding | |
angle_rads = angle_defn( | |
torch.arange(position, dtype=dtype).unsqueeze(1), | |
torch.arange(d_model_size, dtype=dtype).unsqueeze(0), | |
d_model_size, | |
) | |
sines = torch.sin(angle_rads[:, 0::2]) | |
cosines = torch.cos(angle_rads[:, 1::2]) | |
pos_encoding = torch.cat([sines, cosines], dim=-1) | |
return pos_encoding | |
def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): | |
# calculate attention | |
matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2)) | |
dk = k.shape[-1] | |
scaled_attention_logits = matmul_qk / np.sqrt(dk) | |
if mask is not None: | |
nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1) | |
scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4 | |
if attention_mask is not None: | |
# Apply the attention mask | |
scaled_attention_logits = scaled_attention_logits + attention_mask | |
attention_weights = torch.softmax(scaled_attention_logits, dim=-1) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_weights = attention_weights * head_mask | |
output = torch.matmul(attention_weights, v) | |
return output, attention_weights | |
class MultiHeadAttention(torch.nn.Module): | |
def __init__(self, d_model_size, num_heads, output_attentions=False): | |
super().__init__() | |
self.output_attentions = output_attentions | |
self.num_heads = num_heads | |
self.d_model_size = d_model_size | |
self.depth = int(d_model_size / self.num_heads) | |
self.Wq = torch.nn.Linear(d_model_size, d_model_size) | |
self.Wk = torch.nn.Linear(d_model_size, d_model_size) | |
self.Wv = torch.nn.Linear(d_model_size, d_model_size) | |
self.dense = torch.nn.Linear(d_model_size, d_model_size) | |
def split_into_heads(self, x, batch_size): | |
x = x.reshape(batch_size, -1, self.num_heads, self.depth) | |
return x.permute([0, 2, 1, 3]) | |
def forward(self, v, k, q, mask, layer_past=None, attention_mask=None, head_mask=None): | |
batch_size = q.shape[0] | |
q = self.Wq(q) | |
k = self.Wk(k) | |
v = self.Wv(v) | |
q = self.split_into_heads(q, batch_size) | |
k = self.split_into_heads(k, batch_size) | |
v = self.split_into_heads(v, batch_size) | |
if layer_past is not None: | |
past_key, past_value = layer_past[0], layer_past[1] | |
k = torch.cat((past_key, k), dim=-2) | |
v = torch.cat((past_value, v), dim=-2) | |
present = torch.stack((k, v)) | |
output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) | |
scaled_attention = output[0].permute([0, 2, 1, 3]) | |
attn = output[1] | |
original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size) | |
output = self.dense(original_size_attention) | |
outputs = (output, present) | |
if self.output_attentions: | |
outputs = outputs + (attn,) | |
return outputs | |
def point_wise_feed_forward_network(d_model_size, dff): | |
return torch.nn.Sequential(torch.nn.Linear(d_model_size, dff), torch.nn.ReLU(), torch.nn.Linear(dff, d_model_size)) | |
class EncoderLayer(torch.nn.Module): | |
def __init__(self, d_model_size, num_heads, dff, rate=0.1, output_attentions=False): | |
super().__init__() | |
self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads, output_attentions) | |
self.ffn = point_wise_feed_forward_network(d_model_size, dff) | |
self.layernorm1 = torch.nn.LayerNorm(d_model_size, eps=1e-6) | |
self.layernorm2 = torch.nn.LayerNorm(d_model_size, eps=1e-6) | |
self.dropout1 = torch.nn.Dropout(rate) | |
self.dropout2 = torch.nn.Dropout(rate) | |
def forward(self, x, mask, layer_past=None, attention_mask=None, head_mask=None): | |
normed = self.layernorm1(x) | |
attn_outputs = self.multi_head_attention( | |
normed, normed, normed, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask | |
) | |
attn_output = attn_outputs[0] | |
attn_output = self.dropout1(attn_output) | |
out1 = x + attn_output | |
out2 = self.layernorm2(out1) | |
ffn_output = self.ffn(out2) | |
ffn_output = self.dropout2(ffn_output) | |
out2 = out1 + ffn_output | |
outputs = (out2,) + attn_outputs[1:] | |
return outputs | |
class CTRLPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for downloading and loading pretrained models. | |
""" | |
config_class = CTRLConfig | |
pretrained_model_archive_map = CTRL_PRETRAINED_MODEL_ARCHIVE_MAP | |
base_model_prefix = "transformer" | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
CTRL_START_DOCSTRING = r""" | |
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general | |
usage and behavior. | |
Parameters: | |
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
CTRL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`transformers.CTRLTokenizer`. | |
See :func:`transformers.PreTrainedTokenizer.encode` and | |
:func:`transformers.PreTrainedTokenizer.encode_plus` for details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`): | |
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model | |
(see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model | |
should not be passed as input ids as they have already been computed. | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Segment token indices to indicate first and second portions of the inputs. | |
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` | |
corresponds to a `sentence B` token | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. | |
input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
""" | |
class CTRLModel(CTRLPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.output_hidden_states = config.output_hidden_states | |
self.output_attentions = config.output_attentions | |
self.output_past = config.output_past | |
self.d_model_size = config.n_embd | |
self.num_layers = config.n_layer | |
self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float) | |
self.w = nn.Embedding(config.vocab_size, config.n_embd) | |
self.dropout = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList( | |
[ | |
EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop, config.output_attentions) | |
for _ in range(config.n_layer) | |
] | |
) | |
self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.w | |
def set_input_embeddings(self, new_embeddings): | |
self.w = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].attn.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
past=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
): | |
r""" | |
Return: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the last layer of the model. | |
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): | |
Contains pre-computed hidden-states (key and values in the attention blocks). | |
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model | |
should not be passed as input ids as they have already been computed. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
from transformers import CTRLTokenizer, CTRLModel | |
import torch | |
tokenizer = CTRLTokenizer.from_pretrained('ctrl') | |
model = CTRLModel.from_pretrained('ctrl') | |
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if past is None: | |
past_length = 0 | |
past = [None] * len(self.h) | |
else: | |
past_length = past[0][0].size(-2) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
# Attention mask. | |
if attention_mask is not None: | |
attention_mask = attention_mask.view(-1, input_shape[-1]) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# head_mask has shape n_layer x batch x n_heads x N x N | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = ( | |
head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) | |
) # We can specify head_mask for each layer | |
head_mask = head_mask.to( | |
dtype=next(self.parameters()).dtype | |
) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.n_layer | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
token_type_embeds = self.w(token_type_ids) | |
token_type_embeds *= np.sqrt(self.d_model_size) | |
else: | |
token_type_embeds = 0 | |
position_ids = position_ids.view(-1, input_shape[-1]) | |
if inputs_embeds is None: | |
inputs_embeds = self.w(input_ids) | |
# inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded | |
seq_len = input_shape[-1] | |
mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(inputs_embeds.device) | |
inputs_embeds *= np.sqrt(self.d_model_size) | |
pos_embeds = self.pos_encoding[position_ids, :].to(inputs_embeds.device) | |
hidden_states = inputs_embeds + pos_embeds + token_type_embeds | |
hidden_states = self.dropout(hidden_states) | |
output_shape = input_shape + (inputs_embeds.size(-1),) | |
presents = () | |
all_hidden_states = () | |
all_attentions = [] | |
for i, (h, layer_past) in enumerate(zip(self.h, past)): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) | |
outputs = h( | |
hidden_states, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i] | |
) | |
hidden_states, present = outputs[:2] | |
if self.output_past: | |
presents = presents + (present,) | |
if self.output_attentions: | |
all_attentions.append(outputs[2]) | |
hidden_states = self.layernorm(hidden_states) | |
hidden_states = hidden_states.view(*output_shape) | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
outputs = (hidden_states,) | |
if self.output_past: | |
outputs = outputs + (presents,) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
# let the number of heads free (-1) so we can extract attention even after head pruning | |
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] | |
all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) | |
outputs = outputs + (all_attentions,) | |
return outputs | |
class CTRLLMHeadModel(CTRLPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.transformer = CTRLModel(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def prepare_inputs_for_generation(self, input_ids, past, **kwargs): | |
# only last token for inputs_ids if past is defined in kwargs | |
if past: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
return {"input_ids": input_ids, "past": past} | |
def forward( | |
self, | |
input_ids=None, | |
past=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-100, 0, ..., config.vocab_size]`` | |
All labels set to ``-100`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
Return: | |
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs: | |
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when ``labels`` is provided) | |
Language modeling loss. | |
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`): | |
Contains pre-computed hidden-states (key and values in the attention blocks). | |
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model | |
should not be passed as input ids as they have already been computed. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape | |
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
Examples:: | |
import torch | |
from transformers import CTRLTokenizer, CTRLLMHeadModel | |
tokenizer = CTRLTokenizer.from_pretrained('ctrl') | |
model = CTRLLMHeadModel.from_pretrained('ctrl') | |
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=input_ids) | |
loss, logits = outputs[:2] | |
""" | |
transformer_outputs = self.transformer( | |
input_ids, | |
past=past, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
outputs = (lm_logits,) + transformer_outputs[1:] | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) | |