File size: 24,578 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CTRL model."""


import logging

import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

from .configuration_ctrl import CTRLConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
from .modeling_utils import Conv1D, PreTrainedModel


logger = logging.getLogger(__name__)

CTRL_PRETRAINED_MODEL_ARCHIVE_MAP = {"ctrl": "https://storage.googleapis.com/sf-ctrl/pytorch/seqlen256_v1.bin"}


def angle_defn(pos, i, d_model_size):
    angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size)
    return pos * angle_rates


def positional_encoding(position, d_model_size, dtype):
    # create the sinusoidal pattern for the positional encoding
    angle_rads = angle_defn(
        torch.arange(position, dtype=dtype).unsqueeze(1),
        torch.arange(d_model_size, dtype=dtype).unsqueeze(0),
        d_model_size,
    )

    sines = torch.sin(angle_rads[:, 0::2])
    cosines = torch.cos(angle_rads[:, 1::2])

    pos_encoding = torch.cat([sines, cosines], dim=-1)
    return pos_encoding


def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None):
    # calculate attention
    matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2))

    dk = k.shape[-1]
    scaled_attention_logits = matmul_qk / np.sqrt(dk)

    if mask is not None:
        nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1)
        scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4

    if attention_mask is not None:
        # Apply the attention mask
        scaled_attention_logits = scaled_attention_logits + attention_mask

    attention_weights = torch.softmax(scaled_attention_logits, dim=-1)

    # Mask heads if we want to
    if head_mask is not None:
        attention_weights = attention_weights * head_mask

    output = torch.matmul(attention_weights, v)

    return output, attention_weights


class MultiHeadAttention(torch.nn.Module):
    def __init__(self, d_model_size, num_heads, output_attentions=False):
        super().__init__()
        self.output_attentions = output_attentions
        self.num_heads = num_heads
        self.d_model_size = d_model_size

        self.depth = int(d_model_size / self.num_heads)

        self.Wq = torch.nn.Linear(d_model_size, d_model_size)
        self.Wk = torch.nn.Linear(d_model_size, d_model_size)
        self.Wv = torch.nn.Linear(d_model_size, d_model_size)

        self.dense = torch.nn.Linear(d_model_size, d_model_size)

    def split_into_heads(self, x, batch_size):
        x = x.reshape(batch_size, -1, self.num_heads, self.depth)
        return x.permute([0, 2, 1, 3])

    def forward(self, v, k, q, mask, layer_past=None, attention_mask=None, head_mask=None):
        batch_size = q.shape[0]

        q = self.Wq(q)
        k = self.Wk(k)
        v = self.Wv(v)

        q = self.split_into_heads(q, batch_size)
        k = self.split_into_heads(k, batch_size)
        v = self.split_into_heads(v, batch_size)
        if layer_past is not None:
            past_key, past_value = layer_past[0], layer_past[1]
            k = torch.cat((past_key, k), dim=-2)
            v = torch.cat((past_value, v), dim=-2)
        present = torch.stack((k, v))

        output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask)
        scaled_attention = output[0].permute([0, 2, 1, 3])
        attn = output[1]
        original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size)
        output = self.dense(original_size_attention)

        outputs = (output, present)
        if self.output_attentions:
            outputs = outputs + (attn,)
        return outputs


def point_wise_feed_forward_network(d_model_size, dff):
    return torch.nn.Sequential(torch.nn.Linear(d_model_size, dff), torch.nn.ReLU(), torch.nn.Linear(dff, d_model_size))


class EncoderLayer(torch.nn.Module):
    def __init__(self, d_model_size, num_heads, dff, rate=0.1, output_attentions=False):
        super().__init__()

        self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads, output_attentions)
        self.ffn = point_wise_feed_forward_network(d_model_size, dff)

        self.layernorm1 = torch.nn.LayerNorm(d_model_size, eps=1e-6)
        self.layernorm2 = torch.nn.LayerNorm(d_model_size, eps=1e-6)

        self.dropout1 = torch.nn.Dropout(rate)
        self.dropout2 = torch.nn.Dropout(rate)

    def forward(self, x, mask, layer_past=None, attention_mask=None, head_mask=None):
        normed = self.layernorm1(x)
        attn_outputs = self.multi_head_attention(
            normed, normed, normed, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask
        )
        attn_output = attn_outputs[0]
        attn_output = self.dropout1(attn_output)
        out1 = x + attn_output

        out2 = self.layernorm2(out1)
        ffn_output = self.ffn(out2)
        ffn_output = self.dropout2(ffn_output)
        out2 = out1 + ffn_output

        outputs = (out2,) + attn_outputs[1:]
        return outputs


class CTRLPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for downloading and loading pretrained models.
    """

    config_class = CTRLConfig
    pretrained_model_archive_map = CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "transformer"

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


CTRL_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

CTRL_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`transformers.CTRLTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
"""


@add_start_docstrings(
    "The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.",
    CTRL_START_DOCSTRING,
)
class CTRLModel(CTRLPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
        self.output_past = config.output_past

        self.d_model_size = config.n_embd
        self.num_layers = config.n_layer

        self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float)

        self.w = nn.Embedding(config.vocab_size, config.n_embd)

        self.dropout = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList(
            [
                EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop, config.output_attentions)
                for _ in range(config.n_layer)
            ]
        )
        self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

        self.init_weights()

    def get_input_embeddings(self):
        return self.w

    def set_input_embeddings(self, new_embeddings):
        self.w = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
                heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    @add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
    ):
        r"""
    Return:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the last layer of the model.
        past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        from transformers import CTRLTokenizer, CTRLModel
        import torch

        tokenizer = CTRLTokenizer.from_pretrained('ctrl')
        model = CTRLModel.from_pretrained('ctrl')

        input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)

        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

        """
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        # Attention mask.
        if attention_mask is not None:
            attention_mask = attention_mask.view(-1, input_shape[-1])
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.n_layer

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])
            token_type_embeds = self.w(token_type_ids)
            token_type_embeds *= np.sqrt(self.d_model_size)
        else:
            token_type_embeds = 0
        position_ids = position_ids.view(-1, input_shape[-1])

        if inputs_embeds is None:
            inputs_embeds = self.w(input_ids)
        # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
        seq_len = input_shape[-1]
        mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(inputs_embeds.device)

        inputs_embeds *= np.sqrt(self.d_model_size)

        pos_embeds = self.pos_encoding[position_ids, :].to(inputs_embeds.device)

        hidden_states = inputs_embeds + pos_embeds + token_type_embeds

        hidden_states = self.dropout(hidden_states)

        output_shape = input_shape + (inputs_embeds.size(-1),)
        presents = ()
        all_hidden_states = ()
        all_attentions = []
        for i, (h, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
            outputs = h(
                hidden_states, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i]
            )
            hidden_states, present = outputs[:2]
            if self.output_past:
                presents = presents + (present,)

            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.layernorm(hidden_states)
        hidden_states = hidden_states.view(*output_shape)
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_past:
            outputs = outputs + (presents,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
            outputs = outputs + (all_attentions,)
        return outputs


@add_start_docstrings(
    """The CTRL Model transformer with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    CTRL_START_DOCSTRING,
)
class CTRLLMHeadModel(CTRLPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.transformer = CTRLModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head

    def prepare_inputs_for_generation(self, input_ids, past, **kwargs):
        # only last token for inputs_ids if past is defined in kwargs
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)

        return {"input_ids": input_ids, "past": past}

    @add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        past=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-100, 0, ..., config.vocab_size]``
            All labels set to ``-100`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Return:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.CTRLConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when ``labels`` is provided)
            Language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        import torch
        from transformers import CTRLTokenizer, CTRLLMHeadModel

        tokenizer = CTRLTokenizer.from_pretrained('ctrl')
        model = CTRLLMHeadModel.from_pretrained('ctrl')

        input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]

        """
        transformer_outputs = self.transformer(
            input_ids,
            past=past,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        outputs = (lm_logits,) + transformer_outputs[1:]

        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)