Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" XLM configuration """ | |
import logging | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"xlm-mlm-en-2048": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json", | |
"xlm-mlm-ende-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json", | |
"xlm-mlm-enfr-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json", | |
"xlm-mlm-enro-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json", | |
"xlm-mlm-tlm-xnli15-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json", | |
"xlm-mlm-xnli15-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json", | |
"xlm-clm-enfr-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json", | |
"xlm-clm-ende-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json", | |
"xlm-mlm-17-1280": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json", | |
"xlm-mlm-100-1280": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-config.json", | |
} | |
class XLMConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a :class:`~transformers.XLMModel`. | |
It is used to instantiate an XLM model according to the specified arguments, defining the model | |
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of | |
the `xlm-mlm-en-2048 <https://huggingface.co/xlm-mlm-en-2048>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used | |
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` | |
for more information. | |
Args: | |
vocab_size (:obj:`int`, optional, defaults to 30145): | |
Vocabulary size of the XLM model. Defines the different tokens that | |
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.XLMModel`. | |
emb_dim (:obj:`int`, optional, defaults to 2048): | |
Dimensionality of the encoder layers and the pooler layer. | |
n_layer (:obj:`int`, optional, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
n_head (:obj:`int`, optional, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
dropout (:obj:`float`, optional, defaults to 0.1): | |
The dropout probability for all fully connected | |
layers in the embeddings, encoder, and pooler. | |
attention_dropout (:obj:`float`, optional, defaults to 0.1): | |
The dropout probability for the attention mechanism | |
gelu_activation (:obj:`boolean`, optional, defaults to :obj:`True`): | |
The non-linear activation function (function or string) in the | |
encoder and pooler. If set to `True`, "gelu" will be used instead of "relu". | |
sinusoidal_embeddings (:obj:`boolean`, optional, defaults to :obj:`False`): | |
Whether to use sinusoidal positional embeddings instead of absolute positional embeddings. | |
causal (:obj:`boolean`, optional, defaults to :obj:`False`): | |
Set this to `True` for the model to behave in a causal manner. | |
Causal models use a triangular attention mask in order to only attend to the left-side context instead | |
if a bidirectional context. | |
asm (:obj:`boolean`, optional, defaults to :obj:`False`): | |
Whether to use an adaptive log softmax projection layer instead of a linear layer for the prediction | |
layer. | |
n_langs (:obj:`int`, optional, defaults to 1): | |
The number of languages the model handles. Set to 1 for monolingual models. | |
use_lang_emb (:obj:`boolean`, optional, defaults to :obj:`True`) | |
Whether to use language embeddings. Some models use additional language embeddings, see | |
`the multilingual models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__ | |
for information on how to use them. | |
max_position_embeddings (:obj:`int`, optional, defaults to 512): | |
The maximum sequence length that this model might | |
ever be used with. Typically set this to something large just in case | |
(e.g., 512 or 1024 or 2048). | |
embed_init_std (:obj:`float`, optional, defaults to 2048^-0.5): | |
The standard deviation of the truncated_normal_initializer for | |
initializing the embedding matrices. | |
init_std (:obj:`int`, optional, defaults to 50257): | |
The standard deviation of the truncated_normal_initializer for | |
initializing all weight matrices except the embedding matrices. | |
layer_norm_eps (:obj:`float`, optional, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
bos_index (:obj:`int`, optional, defaults to 0): | |
The index of the beginning of sentence token in the vocabulary. | |
eos_index (:obj:`int`, optional, defaults to 1): | |
The index of the end of sentence token in the vocabulary. | |
pad_index (:obj:`int`, optional, defaults to 2): | |
The index of the padding token in the vocabulary. | |
unk_index (:obj:`int`, optional, defaults to 3): | |
The index of the unknown token in the vocabulary. | |
mask_index (:obj:`int`, optional, defaults to 5): | |
The index of the masking token in the vocabulary. | |
is_encoder(:obj:`boolean`, optional, defaults to :obj:`True`): | |
Whether the initialized model should be a transformer encoder or decoder as seen in Vaswani et al. | |
summary_type (:obj:`string`, optional, defaults to "first"): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.XLMForSequenceClassification`. | |
Is one of the following options: | |
- 'last' => take the last token hidden state (like XLNet) | |
- 'first' => take the first token hidden state (like Bert) | |
- 'mean' => take the mean of all tokens hidden states | |
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) | |
- 'attn' => Not implemented now, use multi-head attention | |
summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.XLMForSequenceClassification`. | |
Add a projection after the vector extraction | |
summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.XLMForSequenceClassification`. | |
'tanh' => add a tanh activation to the output, Other => no activation. | |
summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.XLMForSequenceClassification`. | |
If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. | |
summary_first_dropout (:obj:`float`, optional, defaults to 0.1): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.XLMForSequenceClassification`. | |
Add a dropout before the projection and activation | |
start_n_top (:obj:`int`, optional, defaults to 5): | |
Used in the SQuAD evaluation script for XLM and XLNet. | |
end_n_top (:obj:`int`, optional, defaults to 5): | |
Used in the SQuAD evaluation script for XLM and XLNet. | |
mask_token_id (:obj:`int`, optional, defaults to 0): | |
Model agnostic parameter to identify masked tokens when generating text in an MLM context. | |
lang_id (:obj:`int`, optional, defaults to 1): | |
The ID of the language used by the model. This parameter is used when generating | |
text in a given language. | |
Example:: | |
from transformers import XLMConfig, XLMModel | |
# Initializing a XLM configuration | |
configuration = XLMConfig() | |
# Initializing a model from the configuration | |
model = XLMModel(configuration) | |
# Accessing the model configuration | |
configuration = model.config | |
Attributes: | |
pretrained_config_archive_map (Dict[str, str]): | |
A dictionary containing all the available pre-trained checkpoints. | |
""" | |
pretrained_config_archive_map = XLM_PRETRAINED_CONFIG_ARCHIVE_MAP | |
model_type = "xlm" | |
def __init__( | |
self, | |
vocab_size=30145, | |
emb_dim=2048, | |
n_layers=12, | |
n_heads=16, | |
dropout=0.1, | |
attention_dropout=0.1, | |
gelu_activation=True, | |
sinusoidal_embeddings=False, | |
causal=False, | |
asm=False, | |
n_langs=1, | |
use_lang_emb=True, | |
max_position_embeddings=512, | |
embed_init_std=2048 ** -0.5, | |
layer_norm_eps=1e-12, | |
init_std=0.02, | |
bos_index=0, | |
eos_index=1, | |
pad_index=2, | |
unk_index=3, | |
mask_index=5, | |
is_encoder=True, | |
summary_type="first", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
start_n_top=5, | |
end_n_top=5, | |
mask_token_id=0, | |
lang_id=0, | |
**kwargs | |
): | |
"""Constructs XLMConfig. | |
""" | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.emb_dim = emb_dim | |
self.n_layers = n_layers | |
self.n_heads = n_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.gelu_activation = gelu_activation | |
self.sinusoidal_embeddings = sinusoidal_embeddings | |
self.causal = causal | |
self.asm = asm | |
self.n_langs = n_langs | |
self.use_lang_emb = use_lang_emb | |
self.layer_norm_eps = layer_norm_eps | |
self.bos_index = bos_index | |
self.eos_index = eos_index | |
self.pad_index = pad_index | |
self.unk_index = unk_index | |
self.mask_index = mask_index | |
self.is_encoder = is_encoder | |
self.max_position_embeddings = max_position_embeddings | |
self.embed_init_std = embed_init_std | |
self.init_std = init_std | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_proj_to_labels = summary_proj_to_labels | |
self.summary_first_dropout = summary_first_dropout | |
self.start_n_top = start_n_top | |
self.end_n_top = end_n_top | |
self.mask_token_id = mask_token_id | |
self.lang_id = lang_id | |
if "n_words" in kwargs: | |
self.n_words = kwargs["n_words"] | |
def n_words(self): # For backward compatibility | |
return self.vocab_size | |
def n_words(self, value): # For backward compatibility | |
self.vocab_size = value | |
def hidden_size(self): | |
return self.emb_dim | |
def num_attention_heads(self): | |
return self.n_heads | |
def num_hidden_layers(self): | |
return self.n_layers | |