File size: 12,825 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XLM configuration """


import logging

from .configuration_utils import PretrainedConfig


logger = logging.getLogger(__name__)

XLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "xlm-mlm-en-2048": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
    "xlm-mlm-ende-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json",
    "xlm-mlm-enfr-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json",
    "xlm-mlm-enro-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json",
    "xlm-mlm-tlm-xnli15-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json",
    "xlm-mlm-xnli15-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json",
    "xlm-clm-enfr-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json",
    "xlm-clm-ende-1024": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json",
    "xlm-mlm-17-1280": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json",
    "xlm-mlm-100-1280": "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-config.json",
}


class XLMConfig(PretrainedConfig):
    """
        This is the configuration class to store the configuration of a :class:`~transformers.XLMModel`.
        It is used to instantiate an XLM model according to the specified arguments, defining the model
        architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
        the `xlm-mlm-en-2048 <https://huggingface.co/xlm-mlm-en-2048>`__ architecture.

        Configuration objects inherit from  :class:`~transformers.PretrainedConfig` and can be used
        to control the model outputs. Read the documentation from  :class:`~transformers.PretrainedConfig`
        for more information.

        Args:
            vocab_size (:obj:`int`, optional, defaults to 30145):
                Vocabulary size of the XLM model. Defines the different tokens that
                can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.XLMModel`.
            emb_dim (:obj:`int`, optional, defaults to 2048):
                Dimensionality of the encoder layers and the pooler layer.
            n_layer (:obj:`int`, optional, defaults to 12):
                Number of hidden layers in the Transformer encoder.
            n_head (:obj:`int`, optional, defaults to 16):
                Number of attention heads for each attention layer in the Transformer encoder.
            dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout probability for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_dropout (:obj:`float`, optional, defaults to 0.1):
                The dropout probability for the attention mechanism
            gelu_activation (:obj:`boolean`, optional, defaults to :obj:`True`):
                The non-linear activation function (function or string) in the
                encoder and pooler. If set to `True`, "gelu" will be used instead of "relu".
            sinusoidal_embeddings (:obj:`boolean`, optional, defaults to :obj:`False`):
                Whether to use sinusoidal positional embeddings instead of absolute positional embeddings.
            causal (:obj:`boolean`, optional, defaults to :obj:`False`):
                Set this to `True` for the model to behave in a causal manner.
                Causal models use a triangular attention mask in order to only attend to the left-side context instead
                if a bidirectional context.
            asm (:obj:`boolean`, optional, defaults to :obj:`False`):
                Whether to use an adaptive log softmax projection layer instead of a linear layer for the prediction
                layer.
            n_langs (:obj:`int`, optional, defaults to 1):
                The number of languages the model handles. Set to 1 for monolingual models.
            use_lang_emb (:obj:`boolean`, optional, defaults to :obj:`True`)
                Whether to use language embeddings. Some models use additional language embeddings, see
                `the multilingual models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__
                for information on how to use them.
            max_position_embeddings (:obj:`int`, optional, defaults to 512):
                The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            embed_init_std (:obj:`float`, optional, defaults to 2048^-0.5):
                The standard deviation of the truncated_normal_initializer for
                initializing the embedding matrices.
            init_std (:obj:`int`, optional, defaults to 50257):
                The standard deviation of the truncated_normal_initializer for
                initializing all weight matrices except the embedding matrices.
            layer_norm_eps (:obj:`float`, optional, defaults to 1e-12):
                The epsilon used by the layer normalization layers.
            bos_index (:obj:`int`, optional, defaults to 0):
                The index of the beginning of sentence token in the vocabulary.
            eos_index (:obj:`int`, optional, defaults to 1):
                The index of the end of sentence token in the vocabulary.
            pad_index (:obj:`int`, optional, defaults to 2):
                The index of the padding token in the vocabulary.
            unk_index (:obj:`int`, optional, defaults to 3):
                The index of the unknown token in the vocabulary.
            mask_index (:obj:`int`, optional, defaults to 5):
                The index of the masking token in the vocabulary.
            is_encoder(:obj:`boolean`, optional, defaults to :obj:`True`):
                Whether the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
            summary_type (:obj:`string`, optional, defaults to "first"):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                Is one of the following options:

                - 'last' => take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                Add a projection after the vector extraction
            summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                'tanh' => add a tanh activation to the output, Other => no activation.
            summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
            summary_first_dropout (:obj:`float`, optional, defaults to 0.1):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.XLMForSequenceClassification`.
                Add a dropout before the projection and activation
            start_n_top (:obj:`int`, optional, defaults to 5):
                Used in the SQuAD evaluation script for XLM and XLNet.
            end_n_top (:obj:`int`, optional, defaults to 5):
                Used in the SQuAD evaluation script for XLM and XLNet.
            mask_token_id (:obj:`int`, optional, defaults to 0):
                Model agnostic parameter to identify masked tokens when generating text in an MLM context.
            lang_id (:obj:`int`, optional, defaults to 1):
                The ID of the language used by the model. This parameter is used when generating
                text in a given language.

        Example::

            from transformers import XLMConfig, XLMModel

            # Initializing a XLM configuration
            configuration = XLMConfig()

            # Initializing a model from the configuration
            model = XLMModel(configuration)

            # Accessing the model configuration
            configuration = model.config

        Attributes:
            pretrained_config_archive_map (Dict[str, str]):
                A dictionary containing all the available pre-trained checkpoints.
    """

    pretrained_config_archive_map = XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
    model_type = "xlm"

    def __init__(
        self,
        vocab_size=30145,
        emb_dim=2048,
        n_layers=12,
        n_heads=16,
        dropout=0.1,
        attention_dropout=0.1,
        gelu_activation=True,
        sinusoidal_embeddings=False,
        causal=False,
        asm=False,
        n_langs=1,
        use_lang_emb=True,
        max_position_embeddings=512,
        embed_init_std=2048 ** -0.5,
        layer_norm_eps=1e-12,
        init_std=0.02,
        bos_index=0,
        eos_index=1,
        pad_index=2,
        unk_index=3,
        mask_index=5,
        is_encoder=True,
        summary_type="first",
        summary_use_proj=True,
        summary_activation=None,
        summary_proj_to_labels=True,
        summary_first_dropout=0.1,
        start_n_top=5,
        end_n_top=5,
        mask_token_id=0,
        lang_id=0,
        **kwargs
    ):
        """Constructs XLMConfig.
        """
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.emb_dim = emb_dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.gelu_activation = gelu_activation
        self.sinusoidal_embeddings = sinusoidal_embeddings
        self.causal = causal
        self.asm = asm
        self.n_langs = n_langs
        self.use_lang_emb = use_lang_emb
        self.layer_norm_eps = layer_norm_eps
        self.bos_index = bos_index
        self.eos_index = eos_index
        self.pad_index = pad_index
        self.unk_index = unk_index
        self.mask_index = mask_index
        self.is_encoder = is_encoder
        self.max_position_embeddings = max_position_embeddings
        self.embed_init_std = embed_init_std
        self.init_std = init_std
        self.summary_type = summary_type
        self.summary_use_proj = summary_use_proj
        self.summary_activation = summary_activation
        self.summary_proj_to_labels = summary_proj_to_labels
        self.summary_first_dropout = summary_first_dropout
        self.start_n_top = start_n_top
        self.end_n_top = end_n_top
        self.mask_token_id = mask_token_id
        self.lang_id = lang_id

        if "n_words" in kwargs:
            self.n_words = kwargs["n_words"]

    @property
    def n_words(self):  # For backward compatibility
        return self.vocab_size

    @n_words.setter
    def n_words(self, value):  # For backward compatibility
        self.vocab_size = value

    @property
    def hidden_size(self):
        return self.emb_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers