Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" OpenAI GPT configuration """ | |
import logging | |
from .configuration_utils import PretrainedConfig | |
logger = logging.getLogger(__name__) | |
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json" | |
} | |
class OpenAIGPTConfig(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of an :class:`~transformers.OpenAIGPTModel`. | |
It is used to instantiate an GPT model according to the specified arguments, defining the model | |
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of | |
the `GPT <https://huggingface.co/openai-gpt>`__ architecture from OpenAI. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used | |
to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` | |
for more information. | |
Args: | |
vocab_size (:obj:`int`, optional, defaults to 40478): | |
Vocabulary size of the GPT model. Defines the different tokens that | |
can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.CTRLModel`. | |
n_positions (:obj:`int`, optional, defaults to 512): | |
The maximum sequence length that this model might ever be used with. | |
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | |
n_ctx (:obj:`int`, optional, defaults to 512): | |
Dimensionality of the causal mask (usually same as n_positions). | |
n_embd (:obj:`int`, optional, defaults to 768): | |
Dimensionality of the embeddings and hidden states. | |
n_layer (:obj:`int`, optional, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
n_head (:obj:`int`, optional, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
afn (:obj:`str` or :obj:`function`, optional, defaults to "gelu"): | |
The non-linear activation function (function or string) in the encoder and pooler. | |
If string, "gelu", "relu", "swish" and "gelu_new" are supported. | |
resid_pdrop (:obj:`float`, optional, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
embd_pdrop (:obj:`int`, optional, defaults to 0.1): | |
The dropout ratio for the embeddings. | |
attn_pdrop (:obj:`float`, optional, defaults to 0.1): | |
The dropout ratio for the attention. | |
layer_norm_epsilon (:obj:`float`, optional, defaults to 1e-5): | |
The epsilon to use in the layer normalization layers | |
initializer_range (:obj:`float`, optional, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
predict_special_tokens (:obj:`boolean`, optional, defaults to :obj:`True`): | |
Whether special tokens should be predicted when the model is has a language modeling head. | |
summary_type (:obj:`string`, optional, defaults to "cls_index"): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.OpenAIGPTDoubleHeadsModel`. | |
Is one of the following options: | |
- 'last' => take the last token hidden state (like XLNet) | |
- 'first' => take the first token hidden state (like Bert) | |
- 'mean' => take the mean of all tokens hidden states | |
- 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) | |
- 'attn' => Not implemented now, use multi-head attention | |
summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.OpenAIGPTDoubleHeadsModel`. | |
Add a projection after the vector extraction | |
summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.OpenAIGPTDoubleHeadsModel`. | |
'tanh' => add a tanh activation to the output, Other => no activation. | |
summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.OpenAIGPTDoubleHeadsModel`. | |
If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. | |
summary_first_dropout (:obj:`float`, optional, defaults to 0.1): | |
Argument used when doing sequence summary. Used in for the multiple choice head in | |
:class:`~transformers.OpenAIGPTDoubleHeadsModel`. | |
Add a dropout before the projection and activation | |
Example:: | |
from transformers import OpenAIGPTConfig, OpenAIGPTModel | |
# Initializing a GPT configuration | |
configuration = OpenAIGPTConfig() | |
# Initializing a model from the configuration | |
model = OpenAIGPTModel(configuration) | |
# Accessing the model configuration | |
configuration = model.config | |
Attributes: | |
pretrained_config_archive_map (Dict[str, str]): | |
A dictionary containing all the available pre-trained checkpoints. | |
""" | |
pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP | |
model_type = "openai-gpt" | |
def __init__( | |
self, | |
vocab_size=40478, | |
n_positions=512, | |
n_ctx=512, | |
n_embd=768, | |
n_layer=12, | |
n_head=12, | |
afn="gelu", | |
resid_pdrop=0.1, | |
embd_pdrop=0.1, | |
attn_pdrop=0.1, | |
layer_norm_epsilon=1e-5, | |
initializer_range=0.02, | |
predict_special_tokens=True, | |
summary_type="cls_index", | |
summary_use_proj=True, | |
summary_activation=None, | |
summary_proj_to_labels=True, | |
summary_first_dropout=0.1, | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.vocab_size = vocab_size | |
self.n_ctx = n_ctx | |
self.n_positions = n_positions | |
self.n_embd = n_embd | |
self.n_layer = n_layer | |
self.n_head = n_head | |
self.afn = afn | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attn_pdrop = attn_pdrop | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.initializer_range = initializer_range | |
self.predict_special_tokens = predict_special_tokens | |
self.summary_type = summary_type | |
self.summary_use_proj = summary_use_proj | |
self.summary_activation = summary_activation | |
self.summary_first_dropout = summary_first_dropout | |
self.summary_proj_to_labels = summary_proj_to_labels | |
def max_position_embeddings(self): | |
return self.n_positions | |
def hidden_size(self): | |
return self.n_embd | |
def num_attention_heads(self): | |
return self.n_head | |
def num_hidden_layers(self): | |
return self.n_layer | |