File size: 8,294 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT configuration """


import logging

from .configuration_utils import PretrainedConfig


logger = logging.getLogger(__name__)

OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"
}


class OpenAIGPTConfig(PretrainedConfig):
    """
        This is the configuration class to store the configuration of an :class:`~transformers.OpenAIGPTModel`.
        It is used to instantiate an GPT model according to the specified arguments, defining the model
        architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
        the `GPT <https://huggingface.co/openai-gpt>`__ architecture from OpenAI.

        Configuration objects inherit from  :class:`~transformers.PretrainedConfig` and can be used
        to control the model outputs. Read the documentation from  :class:`~transformers.PretrainedConfig`
        for more information.

        Args:
            vocab_size (:obj:`int`, optional, defaults to 40478):
                Vocabulary size of the GPT model. Defines the different tokens that
                can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.CTRLModel`.
            n_positions (:obj:`int`, optional, defaults to 512):
                The maximum sequence length that this model might ever be used with.
                Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
            n_ctx (:obj:`int`, optional, defaults to 512):
                Dimensionality of the causal mask (usually same as n_positions).
            n_embd (:obj:`int`, optional, defaults to 768):
                Dimensionality of the embeddings and hidden states.
            n_layer (:obj:`int`, optional, defaults to 12):
                Number of hidden layers in the Transformer encoder.
            n_head (:obj:`int`, optional, defaults to 12):
                Number of attention heads for each attention layer in the Transformer encoder.
            afn (:obj:`str` or :obj:`function`, optional, defaults to "gelu"):
                The non-linear activation function (function or string) in the encoder and pooler.
                If string, "gelu", "relu", "swish" and "gelu_new" are supported.
            resid_pdrop (:obj:`float`, optional, defaults to 0.1):
                The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
            embd_pdrop (:obj:`int`, optional, defaults to 0.1):
                The dropout ratio for the embeddings.
            attn_pdrop (:obj:`float`, optional, defaults to 0.1):
                The dropout ratio for the attention.
            layer_norm_epsilon (:obj:`float`, optional, defaults to 1e-5):
                The epsilon to use in the layer normalization layers
            initializer_range (:obj:`float`, optional, defaults to 0.02):
                The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
            predict_special_tokens (:obj:`boolean`, optional, defaults to :obj:`True`):
                Whether special tokens should be predicted when the model is has a language modeling head.
            summary_type (:obj:`string`, optional, defaults to "cls_index"):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
                Is one of the following options:

                - 'last' => take the last token hidden state (like XLNet)
                - 'first' => take the first token hidden state (like Bert)
                - 'mean' => take the mean of all tokens hidden states
                - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2)
                - 'attn' => Not implemented now, use multi-head attention
            summary_use_proj (:obj:`boolean`, optional, defaults to :obj:`True`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
                Add a projection after the vector extraction
            summary_activation (:obj:`string` or :obj:`None`, optional, defaults to :obj:`None`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
                'tanh' => add a tanh activation to the output, Other => no activation.
            summary_proj_to_labels (:obj:`boolean`, optional, defaults to :obj:`True`):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
                If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False.
            summary_first_dropout (:obj:`float`, optional, defaults to 0.1):
                Argument used when doing sequence summary. Used in for the multiple choice head in
                :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
                Add a dropout before the projection and activation

        Example::

            from transformers import OpenAIGPTConfig, OpenAIGPTModel

            # Initializing a GPT configuration
            configuration = OpenAIGPTConfig()

            # Initializing a model from the configuration
            model = OpenAIGPTModel(configuration)

            # Accessing the model configuration
            configuration = model.config

        Attributes:
            pretrained_config_archive_map (Dict[str, str]):
                A dictionary containing all the available pre-trained checkpoints.
    """

    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
    model_type = "openai-gpt"

    def __init__(
        self,
        vocab_size=40478,
        n_positions=512,
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        predict_special_tokens=True,
        summary_type="cls_index",
        summary_use_proj=True,
        summary_activation=None,
        summary_proj_to_labels=True,
        summary_first_dropout=0.1,
        **kwargs
    ):
        super().__init__(**kwargs)

        self.vocab_size = vocab_size
        self.n_ctx = n_ctx
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_head = n_head
        self.afn = afn
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.predict_special_tokens = predict_special_tokens
        self.summary_type = summary_type
        self.summary_use_proj = summary_use_proj
        self.summary_activation = summary_activation
        self.summary_first_dropout = summary_first_dropout
        self.summary_proj_to_labels = summary_proj_to_labels

    @property
    def max_position_embeddings(self):
        return self.n_positions

    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer