Spaces:
Sleeping
Sleeping
# Copyright 2020 Google and DeepMind. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
REPO=$PWD | |
MODEL=${1:-"xlm-roberta-base"} | |
STAGE=${2:-1} | |
GPU=${3:-0} | |
DATA_DIR=${4:-"$REPO/download/"} | |
OUT_DIR=${5:-"$REPO/outputs/"} | |
SEED=${6:-1} | |
export CUDA_VISIBLE_DEVICES=$GPU | |
cp -r $DATA_DIR/squad/ $DATA_DIR/mlqa/squad1.1/ | |
TASK='mlqa' | |
TRANSLATION_PATH=$DATA_DIR/xtreme_translations/SQuAD/translate-train/ | |
MODEL_PATH=$DATA_DIR/$MODEL | |
EPOCH=4 | |
MAXL=384 | |
LANGS="en,es,de,ar,hi,vi,zh" | |
BSR=0.3 | |
SA=0.3 | |
SNBS=-1 | |
CSR=0.3 | |
R1_LAMBDA=5.0 | |
R2_LAMBDA=5.0 | |
if [ $MODEL == "xlm-roberta-large" ]; then | |
BATCH_SIZE=4 | |
GRAD_ACC=8 | |
LR=1.5e-5 | |
else | |
BATCH_SIZE=32 | |
GRAD_ACC=1 | |
LR=3e-5 | |
fi | |
if [ $STAGE == 1 ]; then | |
OUTPUT_DIR="${OUT_DIR}/${TASK}/${MODEL}-LR${LR}-epoch${EPOCH}-MaxLen${MAXL}-CS-csr${CSR}-R1_LAMBDA${R1_LAMBDA}/" | |
python ./src/run_qa.py --model_type xlmr \ | |
--task_name $TASK \ | |
--model_name_or_path $MODEL_PATH \ | |
--do_train \ | |
--do_eval \ | |
--language $LANGS \ | |
--train_language en \ | |
--data_dir $DATA_DIR/$TASK/ \ | |
--per_gpu_train_batch_size $BATCH_SIZE \ | |
--gradient_accumulation_steps $GRAD_ACC \ | |
--per_gpu_eval_batch_size 128 \ | |
--learning_rate $LR \ | |
--num_train_epochs $EPOCH \ | |
--save_steps 0 \ | |
--logging_each_epoch \ | |
--max_seq_length $MAXL \ | |
--doc_stride 128 \ | |
--output_dir $OUTPUT_DIR \ | |
--overwrite_output_dir \ | |
--evaluate_during_training \ | |
--logging_steps 50 \ | |
--evaluate_steps 0 \ | |
--seed $SEED \ | |
--fp16 --fp16_opt_level O2 \ | |
--warmup_steps -1 \ | |
--enable_r1_loss \ | |
--r1_lambda $R1_LAMBDA \ | |
--original_loss \ | |
--overall_ratio 1.0 \ | |
--keep_boundary_unchanged \ | |
--enable_code_switch \ | |
--code_switch_ratio $CSR \ | |
--dict_dir $DATA_DIR/dicts \ | |
--dict_languages es,de,ar,hi,vi,zh \ | |
--noised_max_seq_length $MAXL | |
elif [ $STAGE == 2 ]; then | |
FIRST_STAGE_MODEL_PATH="${OUT_DIR}/${TASK}/${MODEL}-LR${LR}-epoch${EPOCH}-MaxLen${MAXL}-CS-csr${CSR}-R1_LAMBDA${R1_LAMBDA}/" | |
OUTPUT_DIR="${OUT_DIR}/${TASK}/${MODEL}-LR${LR}-epoch${EPOCH}-MaxLen${MAXL}-SS-bsr${BSR}-sa${SA}-snbs${SNBS}-R1_Lambda${R1_LAMBDA}-Aug1.0-SS-R2_Lambda${R2_LAMBDA}/" | |
python ./src/run_qa.py --model_type xlmr \ | |
--task_name $TASK \ | |
--model_name_or_path $MODEL_PATH \ | |
--do_train \ | |
--do_eval \ | |
--language $LANGS \ | |
--train_language en \ | |
--data_dir $DATA_DIR/$TASK/ \ | |
--per_gpu_train_batch_size $BATCH_SIZE \ | |
--gradient_accumulation_steps $GRAD_ACC \ | |
--per_gpu_eval_batch_size 128 \ | |
--learning_rate $LR \ | |
--num_train_epochs $EPOCH \ | |
--save_steps 0 \ | |
--logging_each_epoch \ | |
--max_seq_length $MAXL \ | |
--doc_stride 128 \ | |
--output_dir $OUTPUT_DIR \ | |
--overwrite_output_dir \ | |
--evaluate_during_training \ | |
--logging_steps 50 \ | |
--evaluate_steps 0 \ | |
--seed $SEED \ | |
--fp16 --fp16_opt_level O2 \ | |
--warmup_steps -1 \ | |
--enable_r1_loss \ | |
--r1_lambda $R1_LAMBDA \ | |
--original_loss \ | |
--overall_ratio 1.0 \ | |
--keep_boundary_unchanged \ | |
--enable_bpe_sampling \ | |
--bpe_sampling_ratio $BSR \ | |
--sampling_alpha $SA \ | |
--sampling_nbest_size $SNBS \ | |
--noised_max_seq_length $MAXL \ | |
--enable_data_augmentation \ | |
--augment_ratio 1.0 \ | |
--augment_method ss \ | |
--max_steps 24000 \ | |
--r2_lambda $R2_LAMBDA \ | |
--first_stage_model_path $FIRST_MODEL_PATH | |
fi | |