File size: 4,166 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/bin/bash
# Copyright 2020 Google and DeepMind.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

REPO=$PWD
MODEL=${1:-"xlm-roberta-base"}
STAGE=${2:-1}
GPU=${3:-0}
DATA_DIR=${4:-"$REPO/download/"}
OUT_DIR=${5:-"$REPO/outputs/"}
SEED=${6:-1}

export CUDA_VISIBLE_DEVICES=$GPU


cp -r $DATA_DIR/squad/ $DATA_DIR/mlqa/squad1.1/

TASK='mlqa'

TRANSLATION_PATH=$DATA_DIR/xtreme_translations/SQuAD/translate-train/
MODEL_PATH=$DATA_DIR/$MODEL

EPOCH=4
MAXL=384
LANGS="en,es,de,ar,hi,vi,zh"
BSR=0.3
SA=0.3
SNBS=-1
CSR=0.3
R1_LAMBDA=5.0
R2_LAMBDA=5.0
if [ $MODEL == "xlm-roberta-large" ]; then
  BATCH_SIZE=4
  GRAD_ACC=8
  LR=1.5e-5
else
  BATCH_SIZE=32
  GRAD_ACC=1
  LR=3e-5
fi

if [ $STAGE == 1 ]; then
  OUTPUT_DIR="${OUT_DIR}/${TASK}/${MODEL}-LR${LR}-epoch${EPOCH}-MaxLen${MAXL}-CS-csr${CSR}-R1_LAMBDA${R1_LAMBDA}/"
  python ./src/run_qa.py --model_type xlmr \
        --task_name $TASK \
        --model_name_or_path $MODEL_PATH \
        --do_train \
        --do_eval \
        --language $LANGS \
        --train_language en \
        --data_dir $DATA_DIR/$TASK/ \
        --per_gpu_train_batch_size $BATCH_SIZE \
        --gradient_accumulation_steps $GRAD_ACC \
        --per_gpu_eval_batch_size 128 \
        --learning_rate $LR \
        --num_train_epochs $EPOCH \
        --save_steps 0 \
        --logging_each_epoch \
        --max_seq_length $MAXL \
        --doc_stride 128 \
        --output_dir $OUTPUT_DIR \
        --overwrite_output_dir \
        --evaluate_during_training \
        --logging_steps 50 \
        --evaluate_steps 0 \
        --seed $SEED \
        --fp16 --fp16_opt_level O2 \
        --warmup_steps -1 \
        --enable_r1_loss \
        --r1_lambda $R1_LAMBDA \
        --original_loss \
        --overall_ratio 1.0 \
        --keep_boundary_unchanged \
        --enable_code_switch \
        --code_switch_ratio $CSR \
        --dict_dir $DATA_DIR/dicts \
        --dict_languages es,de,ar,hi,vi,zh \
        --noised_max_seq_length $MAXL
elif [ $STAGE == 2 ]; then
  FIRST_STAGE_MODEL_PATH="${OUT_DIR}/${TASK}/${MODEL}-LR${LR}-epoch${EPOCH}-MaxLen${MAXL}-CS-csr${CSR}-R1_LAMBDA${R1_LAMBDA}/"
  OUTPUT_DIR="${OUT_DIR}/${TASK}/${MODEL}-LR${LR}-epoch${EPOCH}-MaxLen${MAXL}-SS-bsr${BSR}-sa${SA}-snbs${SNBS}-R1_Lambda${R1_LAMBDA}-Aug1.0-SS-R2_Lambda${R2_LAMBDA}/"
  python ./src/run_qa.py --model_type xlmr \
        --task_name $TASK \
        --model_name_or_path $MODEL_PATH \
        --do_train \
        --do_eval \
        --language $LANGS \
        --train_language en \
        --data_dir $DATA_DIR/$TASK/ \
        --per_gpu_train_batch_size $BATCH_SIZE \
        --gradient_accumulation_steps $GRAD_ACC \
        --per_gpu_eval_batch_size 128 \
        --learning_rate $LR \
        --num_train_epochs $EPOCH \
        --save_steps 0 \
        --logging_each_epoch \
        --max_seq_length $MAXL \
        --doc_stride 128 \
        --output_dir $OUTPUT_DIR \
        --overwrite_output_dir \
        --evaluate_during_training \
        --logging_steps 50 \
        --evaluate_steps 0 \
        --seed $SEED \
        --fp16 --fp16_opt_level O2 \
        --warmup_steps -1 \
        --enable_r1_loss \
        --r1_lambda $R1_LAMBDA \
        --original_loss \
        --overall_ratio 1.0 \
        --keep_boundary_unchanged \
        --enable_bpe_sampling \
        --bpe_sampling_ratio $BSR \
        --sampling_alpha $SA \
        --sampling_nbest_size $SNBS \
        --noised_max_seq_length $MAXL \
        --enable_data_augmentation \
        --augment_ratio 1.0 \
        --augment_method ss \
        --max_steps 24000 \
        --r2_lambda $R2_LAMBDA \
        --first_stage_model_path $FIRST_MODEL_PATH
fi