Spaces:
Sleeping
Sleeping
from genericpath import exists | |
import os | |
import torch.nn as nn | |
import torch | |
import logging | |
from tqdm import tqdm, trange | |
import timeit | |
import collections | |
import json | |
import math | |
from bs4 import BeautifulSoup | |
from copy import deepcopy | |
import string | |
import re | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler) | |
from transformers import ( | |
BasicTokenizer, | |
) | |
from transformers import ( | |
AdamW, | |
get_linear_schedule_with_warmup, | |
) | |
def reorganize_batch_web(args, batch_web): | |
dic = {} | |
dic['input_ids'] = batch_web[0].cuda() | |
dic['attention_mask'] = batch_web[1].cuda() | |
dic['token_type_ids'] = batch_web[2].cuda() | |
dic['xpath_tags_seq'] = batch_web[3].cuda() | |
dic['xpath_subs_seq'] = batch_web[4].cuda() | |
dic['start_positions'] = batch_web[5].cuda() | |
dic['end_positions'] = batch_web[6].cuda() | |
if 'box' in args.embedding_mode: | |
dic['bbox'] = batch_web[7].cuda() # new added | |
dic['embedding_mode'] = args.embedding_mode | |
return dic | |
def train(args, dataset_web, model, tokenizer): | |
# torch.cuda.set_device(args.local_rank) | |
# Log when executing on clusters | |
try: | |
from azureml.core.run import Run | |
aml_run = Run.get_context() | |
except: | |
aml_run = None | |
# Open tensorboard | |
writer = SummaryWriter(f'{args.output_dir}/output/{args.exp_name}') | |
# Count batch | |
gpu_nums = torch.cuda.device_count() | |
batch = args.batch_per_gpu * gpu_nums | |
dataloader_web = DataLoader( | |
dataset_web, batch_size=batch, num_workers=args.num_workers, pin_memory=False, shuffle=True, | |
) | |
# Get warmup steps | |
total_step = args.epoch * len(dataloader_web) | |
warmup_steps = int(args.warmup_ratio * total_step) | |
# Prepare optimizers | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [ | |
p | |
for n, p in model.named_parameters() | |
if not any(nd in n for nd in no_decay) | |
], | |
"weight_decay": args.weight_decay, | |
}, | |
{ | |
"params": [ | |
p | |
for n, p in model.named_parameters() | |
if any(nd in n for nd in no_decay) | |
], | |
"weight_decay": 0.0, | |
}, | |
] | |
optimizer = AdamW( | |
optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon | |
) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_step | |
) | |
# Transfer the parameters to cuda | |
model = model.cuda() | |
# Prepare fp16 | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError( | |
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training." | |
) | |
model, optimizer = amp.initialize( | |
model, optimizer, opt_level=args.fp16_opt_level | |
) | |
logging.info('Successfully load fp16 mode') | |
# Parallel or Distribute | |
if gpu_nums > 1: | |
model = torch.nn.DataParallel(model) | |
# Record some training info | |
logging.info("***** Running training *****") | |
# logging.info(" Num examples in dataset_doc = %d", len(dataset_doc)) | |
logging.info(" Num examples in dataset_web = %d", len(dataset_web)) | |
# logging.info(" Num steps for each epoch for doc = %d", len(dataloader_doc)) | |
logging.info(" Num steps for each epoch for web = %d", len(dataloader_web)) | |
logging.info(" Num Epochs = %d", args.epoch) | |
logging.info( | |
" Instantaneous batch size per GPU = %d", args.batch_per_gpu | |
) | |
logging.info(" Total optimization steps = %d", total_step) | |
# Start training | |
model.zero_grad() | |
train_iterator = trange( | |
0, | |
int(args.epoch), | |
desc="Epoch", | |
) | |
global_step = 0 | |
for now_epoch, _ in enumerate(tqdm(train_iterator, desc="Iteration")): # tqdm for epoch | |
# epoch_iterator_doc = iter(dataloader_doc) | |
epoch_iterator_web = iter(dataloader_web) | |
min_step = len(epoch_iterator_web) | |
for now_step in tqdm(range(min_step), desc="Iteration"): # tqdm for step | |
# batch_doc = epoch_iterator_doc.next() | |
batch_web = epoch_iterator_web.next() | |
batch_web = reorganize_batch_web(args, batch_web) | |
model.train() | |
# loss_doc = model(**batch_doc)[0] | |
loss_web = model(**batch_web)[0] | |
loss = loss_web | |
if gpu_nums > 1: | |
loss = loss.mean() | |
# loss_doc = loss_doc.mean() | |
loss_web = loss_web.mean() | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
if args.fp16: | |
torch.nn.utils.clip_grad_norm_( | |
amp.master_params(optimizer), args.max_grad_norm | |
) | |
else: | |
torch.nn.utils.clip_grad_norm_( | |
model.parameters(), args.max_grad_norm | |
) | |
if global_step % args.accumulation == 0: | |
optimizer.step() | |
model.zero_grad() | |
scheduler.step() | |
global_step += 1 | |
if global_step % args.log_step == 0: | |
logging.info(f'epoch: {now_epoch} | step: {now_step+1} | total_step: {global_step} | loss: {loss} | lr: {scheduler.get_lr()[0]}') | |
writer.add_scalar('loss', loss, global_step//args.log_step) | |
# writer.add_scalar('loss_doc', loss_doc, global_step//args.log_step) | |
writer.add_scalar('loss_web', loss_web, global_step//args.log_step) | |
writer.add_scalar('lr', scheduler.get_lr()[0], global_step//args.log_step) | |
if aml_run is not None: | |
aml_run.log('loss', loss.item()) | |
# aml_run.log('loss_doc', loss_doc.item()) | |
aml_run.log('loss_web', loss_web.item()) | |
aml_run.log('lr', scheduler.get_lr()[0]) | |
if global_step % args.save_step == 0: | |
# Save model checkpoint | |
output_dir = os.path.join(args.output_dir, 'output', args.exp_name, f'step-{global_step}') | |
os.makedirs(output_dir, exist_ok=True) | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logging.info("Saving model checkpoint to %s", output_dir) | |
torch.save( | |
optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt") | |
) | |
torch.save( | |
scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt") | |
) | |
logging.info( | |
"Saving optimizer and scheduler states to %s", output_dir | |
) | |
if global_step % 1000 == 0: | |
# eval | |
print('Start eval!') | |
from data.datasets.websrc import get_websrc_dataset | |
dataset_web, examples, features = get_websrc_dataset(args, tokenizer, evaluate=True, output_examples=True) | |
evaluate(args, dataset_web, examples, features, model, tokenizer, global_step) | |
RawResult = collections.namedtuple("RawResult", | |
["unique_id", "start_logits", "end_logits"]) | |
def to_list(tensor): | |
return tensor.detach().cpu().tolist() | |
def _get_best_indexes(logits, n_best_size): | |
"""Get the n-best logits from a list.""" | |
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) | |
best_indexes = [] | |
for i in range(len(index_and_score)): | |
if i >= n_best_size: | |
break | |
best_indexes.append(index_and_score[i][0]) | |
return best_indexes | |
def _get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): | |
def _strip_spaces(text): | |
ns_chars = [] | |
ns_to_s_map = collections.OrderedDict() | |
for (i, c) in enumerate(text): | |
if c == " ": | |
continue | |
ns_to_s_map[len(ns_chars)] = i | |
ns_chars.append(c) | |
ns_text = "".join(ns_chars) | |
return ns_text, ns_to_s_map | |
# We first tokenize `orig_text`, strip whitespace from the result | |
# and `pred_text`, and check if they are the same length. If they are | |
# NOT the same length, the heuristic has failed. If they are the same | |
# length, we assume the characters are one-to-one aligned. | |
tokenizer = BasicTokenizer(do_lower_case=do_lower_case) | |
tok_text = " ".join(tokenizer.tokenize(orig_text)) | |
start_position = tok_text.find(pred_text) | |
if start_position == -1: | |
# if verbose_logging: | |
# logging.info( | |
# "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) | |
return orig_text | |
end_position = start_position + len(pred_text) - 1 | |
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) | |
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) | |
if len(orig_ns_text) != len(tok_ns_text): | |
if verbose_logging: | |
logging.info("Length not equal after stripping spaces: '%s' vs '%s'", | |
orig_ns_text, tok_ns_text) | |
return orig_text | |
# We then project the characters in `pred_text` back to `orig_text` using | |
# the character-to-character alignment. | |
tok_s_to_ns_map = {} | |
for (i, tok_index) in tok_ns_to_s_map.items(): | |
tok_s_to_ns_map[tok_index] = i | |
orig_start_position = None | |
if start_position in tok_s_to_ns_map: | |
ns_start_position = tok_s_to_ns_map[start_position] | |
if ns_start_position in orig_ns_to_s_map: | |
orig_start_position = orig_ns_to_s_map[ns_start_position] | |
if orig_start_position is None: | |
if verbose_logging: | |
logging.info("Couldn't map start position") | |
return orig_text | |
orig_end_position = None | |
if end_position in tok_s_to_ns_map: | |
ns_end_position = tok_s_to_ns_map[end_position] | |
if ns_end_position in orig_ns_to_s_map: | |
orig_end_position = orig_ns_to_s_map[ns_end_position] | |
if orig_end_position is None: | |
if verbose_logging: | |
logging.info("Couldn't map end position") | |
return orig_text | |
output_text = orig_text[orig_start_position:(orig_end_position + 1)] | |
return output_text | |
def _compute_softmax(scores): | |
"""Compute softmax probability over raw logits.""" | |
if not scores: | |
return [] | |
max_score = None | |
for score in scores: | |
if max_score is None or score > max_score: | |
max_score = score | |
exp_scores = [] | |
total_sum = 0.0 | |
for score in scores: | |
x = math.exp(score - max_score) | |
exp_scores.append(x) | |
total_sum += x | |
probs = [] | |
for score in exp_scores: | |
probs.append(score / total_sum) | |
return probs | |
class EvalOpts: | |
r""" | |
The options which the matrix evaluation process needs. | |
Arguments: | |
data_file (str): the SQuAD-style json file of the dataset in evaluation. | |
root_dir (str): the root directory of the raw WebSRC dataset, which contains the HTML files. | |
pred_file (str): the prediction file which contain the best predicted answer text of each question from the | |
model. | |
tag_pred_file (str): the prediction file which contain the best predicted answer tag id of each question from | |
the model. | |
result_file (str): the file to write down the matrix evaluation results of each question. | |
out_file (str): the file to write down the final matrix evaluation results of the whole dataset. | |
""" | |
def __init__(self, data_file, root_dir, pred_file, tag_pred_file, result_file='', out_file=""): | |
self.data_file = data_file | |
self.root_dir = root_dir | |
self.pred_file = pred_file | |
self.tag_pred_file = tag_pred_file | |
self.result_file = result_file | |
self.out_file = out_file | |
def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, | |
output_prediction_file, output_tag_prediction_file, | |
output_nbest_file, verbose_logging, tokenizer): | |
r""" | |
Compute and write down the final results, including the n best results. | |
Arguments: | |
all_examples (list[SRCExample]): all the SRC Example of the dataset; note that we only need it to provide the | |
mapping from example index to the question-answers id. | |
all_features (list[InputFeatures]): all the features for the input doc spans. | |
all_results (list[RawResult]): all the results from the models. | |
n_best_size (int): the number of the n best buffer and the final n best result saved. | |
max_answer_length (int): constrain the model to predict the answer no longer than it. | |
do_lower_case (bool): whether the model distinguish upper and lower case of the letters. | |
output_prediction_file (str): the file which the best answer text predictions will be written to. | |
output_tag_prediction_file (str): the file which the best answer tag predictions will be written to. | |
output_nbest_file (str): the file which the n best answer predictions including text, tag, and probabilities | |
will be written to. | |
verbose_logging (bool): if true, all of the warnings related to data processing will be printed. | |
""" | |
logging.info("Writing predictions to: %s" % output_prediction_file) | |
logging.info("Writing nbest to: %s" % output_nbest_file) | |
example_index_to_features = collections.defaultdict(list) | |
for feature in all_features: | |
example_index_to_features[feature.example_index].append(feature) | |
unique_id_to_result = {} | |
for result in all_results: | |
unique_id_to_result[result.unique_id] = result | |
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"PrelimPrediction", | |
["feature_index", "start_index", "end_index", "start_logit", "end_logit", "tag_ids"]) | |
all_predictions = collections.OrderedDict() | |
all_tag_predictions = collections.OrderedDict() | |
all_nbest_json = collections.OrderedDict() | |
for (example_index, example) in enumerate(all_examples): | |
features = example_index_to_features[example_index] | |
prelim_predictions = [] | |
for (feature_index, feature) in enumerate(features): | |
result = unique_id_to_result[feature.unique_id] | |
start_indexes = _get_best_indexes(result.start_logits, n_best_size) | |
end_indexes = _get_best_indexes(result.end_logits, n_best_size) | |
# if we could have irrelevant answers, get the min score of irrelevant | |
for start_index in start_indexes: | |
for end_index in end_indexes: | |
# We could hypothetically create invalid predictions, e.g., predict | |
# that the start of the span is in the question. We throw out all | |
# invalid predictions. | |
if start_index >= len(feature.tokens): | |
continue | |
if end_index >= len(feature.tokens): | |
continue | |
if start_index not in feature.token_to_orig_map: | |
continue | |
if end_index not in feature.token_to_orig_map: | |
continue | |
if not feature.token_is_max_context.get(start_index, False): | |
continue | |
if end_index < start_index: | |
continue | |
length = end_index - start_index + 1 | |
if length > max_answer_length: | |
continue | |
tag_ids = set(feature.token_to_tag_index[start_index: end_index + 1]) | |
prelim_predictions.append( | |
_PrelimPrediction( | |
feature_index=feature_index, | |
start_index=start_index, | |
end_index=end_index, | |
start_logit=result.start_logits[start_index], | |
end_logit=result.end_logits[end_index], | |
tag_ids=list(tag_ids))) | |
prelim_predictions = sorted( | |
prelim_predictions, | |
key=lambda x: (x.start_logit + x.end_logit), | |
reverse=True) | |
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name | |
"NbestPrediction", ["text", "start_logit", "end_logit", "tag_ids"]) | |
seen_predictions = {} | |
nbest = [] | |
for pred in prelim_predictions: | |
if len(nbest) >= n_best_size: | |
break | |
feature = features[pred.feature_index] | |
if pred.start_index > 0: # this is a non-null prediction | |
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] | |
orig_doc_start = feature.token_to_orig_map[pred.start_index] | |
orig_doc_end = feature.token_to_orig_map[pred.end_index] | |
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] | |
tok_text = " ".join(tok_tokens) | |
# De-tokenize WordPieces that have been split off. | |
tok_text = tok_text.replace(" ##", "") | |
tok_text = tok_text.replace("##", "") | |
# Clean whitespace | |
tok_text = tok_text.strip() | |
tok_text = " ".join(tok_text.split()) | |
orig_text = " ".join(orig_tokens) | |
final_text = _get_final_text(tok_text, orig_text, do_lower_case, verbose_logging) | |
if final_text in seen_predictions: | |
continue | |
seen_predictions[final_text] = True | |
else: | |
final_text = "" | |
seen_predictions[final_text] = True | |
nbest.append( | |
_NbestPrediction( | |
text=final_text, | |
start_logit=pred.start_logit, | |
end_logit=pred.end_logit, | |
tag_ids=pred.tag_ids)) | |
# In very rare edge cases we could have no valid predictions. So we | |
# just create a nonce prediction in this case to avoid failure. | |
if not nbest: | |
nbest.append( | |
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0, tag_ids=[-1])) | |
assert len(nbest) >= 1 | |
total_scores = [] | |
best_non_null_entry = None | |
for entry in nbest: | |
total_scores.append(entry.start_logit + entry.end_logit) | |
if not best_non_null_entry: | |
if entry.text: | |
best_non_null_entry = entry | |
probs = _compute_softmax(total_scores) | |
nbest_json = [] | |
for (i, entry) in enumerate(nbest): | |
output = collections.OrderedDict() | |
output["text"] = entry.text | |
output["probability"] = probs[i] | |
output["start_logit"] = entry.start_logit | |
output["end_logit"] = entry.end_logit | |
output["tag_ids"] = entry.tag_ids | |
nbest_json.append(output) | |
assert len(nbest_json) >= 1 | |
best = nbest_json[0]["text"].split() | |
best = ' '.join([w for w in best | |
if (w[0] != '<' or w[-1] != '>') | |
and w != "<end-of-node>" | |
and w != tokenizer.sep_token | |
and w != tokenizer.cls_token]) | |
all_predictions[example.qas_id] = best | |
all_tag_predictions[example.qas_id] = nbest_json[0]["tag_ids"] | |
all_nbest_json[example.qas_id] = nbest_json | |
with open(output_prediction_file, "w+") as writer: | |
writer.write(json.dumps(all_predictions, indent=4) + "\n") | |
with open(output_nbest_file, "w+") as writer: | |
writer.write(json.dumps(all_nbest_json, indent=4) + "\n") | |
with open(output_tag_prediction_file, 'w+') as writer: | |
writer.write(json.dumps(all_tag_predictions, indent=4) + '\n') | |
return | |
def make_qid_to_has_ans(dataset): | |
r""" | |
Pick all the questions which has answer in the dataset and return the list. | |
""" | |
qid_to_has_ans = {} | |
for domain in dataset: | |
for w in domain['websites']: | |
for qa in w['qas']: | |
qid_to_has_ans[qa['id']] = bool(qa['answers']) | |
return qid_to_has_ans | |
def normalize_answer(s): | |
"""Lower text and remove punctuation, articles and extra whitespace.""" | |
def remove_articles(text): | |
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) | |
return re.sub(regex, ' ', text) | |
def white_space_fix(text): | |
return ' '.join(text.split()) | |
def remove_punc(text): | |
exclude = set(string.punctuation) | |
return ''.join(ch for ch in text if ch not in exclude) | |
def lower(text): | |
return text.lower() | |
return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
def compute_exact(a_gold, a_pred): | |
r""" | |
Calculate the exact match. | |
""" | |
if normalize_answer(a_gold) == normalize_answer(a_pred): | |
return 1 | |
return 0 | |
def get_raw_scores(dataset, preds, tag_preds, root_dir): | |
r""" | |
Calculate all the three matrix (exact match, f1, POS) for each question. | |
Arguments: | |
dataset (dict): the dataset in use. | |
preds (dict): the answer text prediction for each question in the dataset. | |
tag_preds (dict): the answer tags prediction for each question in the dataset. | |
root_dir (str): the base directory for the html files. | |
Returns: | |
tuple(dict, dict, dict): exact match, f1, pos scores for each question. | |
""" | |
exact_scores = {} | |
f1_scores = {} | |
pos_scores = {} | |
for websites in dataset: | |
for w in websites['websites']: | |
f = os.path.join(root_dir, websites['domain'], w['page_id'][0:2], 'processed_data', | |
w['page_id'] + '.html') | |
for qa in w['qas']: | |
qid = qa['id'] | |
gold_answers = [a['text'] for a in qa['answers'] | |
if normalize_answer(a['text'])] | |
gold_tag_answers = [a['element_id'] for a in qa['answers']] | |
additional_tag_information = [a['answer_start'] for a in qa['answers']] | |
if not gold_answers: | |
# For unanswerable questions, only correct answer is empty string | |
gold_answers = [''] | |
if qid not in preds: | |
print('Missing prediction for %s' % qid) | |
continue | |
a_pred, t_pred = preds[qid], tag_preds[qid] | |
# Take max over all gold answers | |
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers) | |
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers) | |
pos_scores[qid] = max(compute_pos(f, t, a, t_pred) | |
for t, a in zip(gold_tag_answers, additional_tag_information)) | |
return exact_scores, f1_scores, pos_scores | |
def get_tokens(s): | |
r""" | |
Get the word list in the input. | |
""" | |
if not s: | |
return [] | |
return normalize_answer(s).split() | |
def compute_f1(a_gold, a_pred): | |
r""" | |
Calculate the f1 score. | |
""" | |
gold_toks = get_tokens(a_gold) | |
pred_toks = get_tokens(a_pred) | |
common = collections.Counter(gold_toks) & collections.Counter(pred_toks) | |
num_same = sum(common.values()) | |
if len(gold_toks) == 0 or len(pred_toks) == 0: | |
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise | |
return int(gold_toks == pred_toks) | |
if num_same == 0: | |
return 0 | |
precision = 1.0 * num_same / len(pred_toks) | |
recall = 1.0 * num_same / len(gold_toks) | |
f1 = (2 * precision * recall) / (precision + recall) | |
return f1 | |
def compute_pos(f, t_gold, addition, t_pred): | |
r""" | |
Calculate the POS score. | |
Arguments: | |
f (str): the html file on which the question is based. | |
t_gold (int): the gold answer tag id provided by the dataset (the value correspond to the key element_id). | |
addition (int): the addition information used for yes/no question provided by the dataset (the value | |
corresponding to the key answer_start). | |
t_pred (list[int]): the tag ids of the tags corresponding the each word in the predicted answer. | |
Returns: | |
float: the POS score. | |
""" | |
h = BeautifulSoup(open(f), "lxml") | |
p_gold, e_gold = set(), h.find(tid=t_gold) | |
if e_gold is None: | |
if len(t_pred) != 1: | |
return 0 | |
else: | |
t = t_pred[0] | |
e_pred, e_prev = h.find(tid=t), h.find(tid=t-1) | |
if (e_pred is not None) or (addition == 1 and e_prev is not None) or\ | |
(addition == 0 and e_prev is None): | |
return 0 | |
else: | |
return 1 | |
else: | |
p_gold.add(e_gold['tid']) | |
for e in e_gold.parents: | |
if int(e['tid']) < 2: | |
break | |
p_gold.add(e['tid']) | |
p = None | |
for t in t_pred: | |
p_pred, e_pred = set(), h.find(tid=t) | |
if e_pred is not None: | |
p_pred.add(e_pred['tid']) | |
if e_pred.name != 'html': | |
for e in e_pred.parents: | |
if int(e['tid']) < 2: | |
break | |
p_pred.add(e['tid']) | |
else: | |
p_pred.add(str(t)) | |
if p is None: | |
p = p_pred | |
else: | |
p = p & p_pred | |
return len(p_gold & p) / len(p_gold | p) | |
def make_pages_list(dataset): | |
r""" | |
Record all the pages which appears in the dataset and return the list. | |
""" | |
pages_list = [] | |
last_page = None | |
for domain in dataset: | |
for w in domain['websites']: | |
for qa in w['qas']: | |
if last_page != qa['id'][:4]: | |
last_page = qa['id'][:4] | |
pages_list.append(last_page) | |
return pages_list | |
def make_eval_dict(exact_scores, f1_scores, pos_scores, qid_list=None): | |
r""" | |
Make the dictionary to show the evaluation results. | |
""" | |
if qid_list is None: | |
total = len(exact_scores) | |
return collections.OrderedDict([ | |
('exact', 100.0 * sum(exact_scores.values()) / total), | |
('f1', 100.0 * sum(f1_scores.values()) / total), | |
('pos', 100.0 * sum(pos_scores.values()) / total), | |
('total', total), | |
]) | |
else: | |
total = len(qid_list) | |
if total == 0: | |
return collections.OrderedDict([ | |
('exact', 0), | |
('f1', 0), | |
('pos', 0), | |
('total', 0), | |
]) | |
return collections.OrderedDict([ | |
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total), | |
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total), | |
('pos', 100.0 * sum(pos_scores[k] for k in qid_list) / total), | |
('total', total), | |
]) | |
def merge_eval(main_eval, new_eval, prefix): | |
for k in new_eval: | |
main_eval['%s_%s' % (prefix, k)] = new_eval[k] | |
def evaluate_on_squad(opts): | |
with open(opts.data_file) as f: | |
dataset_json = json.load(f) | |
dataset = dataset_json['data'] | |
if isinstance(opts.pred_file, str): | |
with open(opts.pred_file) as f: | |
preds = json.load(f) | |
else: | |
preds = opts.pred_file | |
if isinstance(opts.tag_pred_file, str): | |
with open(opts.tag_pred_file) as f: | |
tag_preds = json.load(f) | |
else: | |
tag_preds = opts.tag_pred_file | |
qid_to_has_ans = make_qid_to_has_ans(dataset) | |
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] | |
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] | |
exact, f1, pos = get_raw_scores(dataset, preds, tag_preds, opts.root_dir) | |
out_eval = make_eval_dict(exact, f1, pos) | |
if has_ans_qids: | |
has_ans_eval = make_eval_dict(exact, f1, pos, qid_list=has_ans_qids) | |
merge_eval(out_eval, has_ans_eval, 'HasAns') | |
if no_ans_qids: | |
no_ans_eval = make_eval_dict(exact, f1, pos, qid_list=no_ans_qids) | |
merge_eval(out_eval, no_ans_eval, 'NoAns') | |
print(json.dumps(out_eval, indent=2)) | |
pages_list, write_eval = make_pages_list(dataset), deepcopy(out_eval) | |
for p in pages_list: | |
pages_ans_qids = [k for k, _ in qid_to_has_ans.items() if p in k] | |
page_eval = make_eval_dict(exact, f1, pos, qid_list=pages_ans_qids) | |
merge_eval(write_eval, page_eval, p) | |
if opts.result_file: | |
with open(opts.result_file, 'w') as f: | |
w = {} | |
for k, v in qid_to_has_ans.items(): | |
w[k] = {'exact': exact[k], 'f1': f1[k], 'pos': pos[k]} | |
json.dump(w, f) | |
if opts.out_file: | |
with open(opts.out_file, 'w') as f: | |
json.dump(write_eval, f) | |
print('****** result ******') | |
print(out_eval) | |
return out_eval | |
def evaluate(args, dataset_web, examples, features, model, tokenizer, step=0): | |
gpu_nums = torch.cuda.device_count() | |
batch = args.batch_per_gpu * gpu_nums | |
eval_sampler = SequentialSampler(dataset_web) | |
eval_dataloader = DataLoader(dataset_web, sampler=eval_sampler, batch_size=batch, num_workers=8) | |
# Eval! | |
logging.info("***** Running evaluation *****") | |
logging.info(" Num examples = %d", len(dataset_web)) | |
logging.info(" Batch size = %d", batch) | |
model = model.cuda() | |
all_results = [] | |
start_time = timeit.default_timer() | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.cuda() for t in batch) | |
with torch.no_grad(): | |
inputs = {'input_ids': batch[0], | |
'attention_mask': batch[1], | |
'token_type_ids': batch[2], | |
'xpath_tags_seq': batch[4], | |
'xpath_subs_seq': batch[5], | |
} | |
feature_indices = batch[3] | |
outputs = model(**inputs) | |
for i, feature_index in enumerate(feature_indices): | |
eval_feature = features[feature_index.item()] | |
unique_id = int(eval_feature.unique_id) | |
result = RawResult(unique_id=unique_id, | |
start_logits=to_list(outputs[0][i]), | |
end_logits=to_list(outputs[1][i])) | |
all_results.append(result) | |
eval_time = timeit.default_timer() - start_time | |
logging.info(" Evaluation done in total %f secs (%f sec per example)", eval_time, eval_time / len(dataset_web)) | |
# Compute predictions | |
# output_dir = os.path.join(args.output_dir, 'output', args.exp_name, f'step-{global_step}') | |
output_prediction_file = os.path.join(args.output_dir,"output", args.exp_name, f"predictions_{step}.json") | |
output_tag_prediction_file = os.path.join(args.output_dir,"output", args.exp_name, f"tag_predictions_{step}.json") | |
output_nbest_file = os.path.join(args.output_dir,"output", args.exp_name, f"nbest_predictions_{step}.json") | |
output_result_file = os.path.join(args.output_dir,"output", args.exp_name, f"qas_eval_results_{step}.json") | |
output_file = os.path.join(args.output_dir,"output", args.exp_name, f"eval_matrix_results_{step}") | |
write_predictions(examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, | |
output_prediction_file, output_tag_prediction_file, output_nbest_file, args.verbose_logging, | |
tokenizer) | |
# Evaluate | |
evaluate_options = EvalOpts(data_file=args.web_eval_file, | |
root_dir=args.root_dir, | |
pred_file=output_prediction_file, | |
tag_pred_file=output_tag_prediction_file, | |
result_file=output_result_file, | |
out_file=output_file) | |
results = evaluate_on_squad(evaluate_options) | |
return results | |