Spaces:
Sleeping
Sleeping
File size: 32,795 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
from genericpath import exists
import os
import torch.nn as nn
import torch
import logging
from tqdm import tqdm, trange
import timeit
import collections
import json
import math
from bs4 import BeautifulSoup
from copy import deepcopy
import string
import re
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler)
from transformers import (
BasicTokenizer,
)
from transformers import (
AdamW,
get_linear_schedule_with_warmup,
)
def reorganize_batch_web(args, batch_web):
dic = {}
dic['input_ids'] = batch_web[0].cuda()
dic['attention_mask'] = batch_web[1].cuda()
dic['token_type_ids'] = batch_web[2].cuda()
dic['xpath_tags_seq'] = batch_web[3].cuda()
dic['xpath_subs_seq'] = batch_web[4].cuda()
dic['start_positions'] = batch_web[5].cuda()
dic['end_positions'] = batch_web[6].cuda()
if 'box' in args.embedding_mode:
dic['bbox'] = batch_web[7].cuda() # new added
dic['embedding_mode'] = args.embedding_mode
return dic
def train(args, dataset_web, model, tokenizer):
# torch.cuda.set_device(args.local_rank)
# Log when executing on clusters
try:
from azureml.core.run import Run
aml_run = Run.get_context()
except:
aml_run = None
# Open tensorboard
writer = SummaryWriter(f'{args.output_dir}/output/{args.exp_name}')
# Count batch
gpu_nums = torch.cuda.device_count()
batch = args.batch_per_gpu * gpu_nums
dataloader_web = DataLoader(
dataset_web, batch_size=batch, num_workers=args.num_workers, pin_memory=False, shuffle=True,
)
# Get warmup steps
total_step = args.epoch * len(dataloader_web)
warmup_steps = int(args.warmup_ratio * total_step)
# Prepare optimizers
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon
)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_step
)
# Transfer the parameters to cuda
model = model.cuda()
# Prepare fp16
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
)
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.fp16_opt_level
)
logging.info('Successfully load fp16 mode')
# Parallel or Distribute
if gpu_nums > 1:
model = torch.nn.DataParallel(model)
# Record some training info
logging.info("***** Running training *****")
# logging.info(" Num examples in dataset_doc = %d", len(dataset_doc))
logging.info(" Num examples in dataset_web = %d", len(dataset_web))
# logging.info(" Num steps for each epoch for doc = %d", len(dataloader_doc))
logging.info(" Num steps for each epoch for web = %d", len(dataloader_web))
logging.info(" Num Epochs = %d", args.epoch)
logging.info(
" Instantaneous batch size per GPU = %d", args.batch_per_gpu
)
logging.info(" Total optimization steps = %d", total_step)
# Start training
model.zero_grad()
train_iterator = trange(
0,
int(args.epoch),
desc="Epoch",
)
global_step = 0
for now_epoch, _ in enumerate(tqdm(train_iterator, desc="Iteration")): # tqdm for epoch
# epoch_iterator_doc = iter(dataloader_doc)
epoch_iterator_web = iter(dataloader_web)
min_step = len(epoch_iterator_web)
for now_step in tqdm(range(min_step), desc="Iteration"): # tqdm for step
# batch_doc = epoch_iterator_doc.next()
batch_web = epoch_iterator_web.next()
batch_web = reorganize_batch_web(args, batch_web)
model.train()
# loss_doc = model(**batch_doc)[0]
loss_web = model(**batch_web)[0]
loss = loss_web
if gpu_nums > 1:
loss = loss.mean()
# loss_doc = loss_doc.mean()
loss_web = loss_web.mean()
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.fp16:
torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), args.max_grad_norm
)
else:
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm
)
if global_step % args.accumulation == 0:
optimizer.step()
model.zero_grad()
scheduler.step()
global_step += 1
if global_step % args.log_step == 0:
logging.info(f'epoch: {now_epoch} | step: {now_step+1} | total_step: {global_step} | loss: {loss} | lr: {scheduler.get_lr()[0]}')
writer.add_scalar('loss', loss, global_step//args.log_step)
# writer.add_scalar('loss_doc', loss_doc, global_step//args.log_step)
writer.add_scalar('loss_web', loss_web, global_step//args.log_step)
writer.add_scalar('lr', scheduler.get_lr()[0], global_step//args.log_step)
if aml_run is not None:
aml_run.log('loss', loss.item())
# aml_run.log('loss_doc', loss_doc.item())
aml_run.log('loss_web', loss_web.item())
aml_run.log('lr', scheduler.get_lr()[0])
if global_step % args.save_step == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'output', args.exp_name, f'step-{global_step}')
os.makedirs(output_dir, exist_ok=True)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logging.info("Saving model checkpoint to %s", output_dir)
torch.save(
optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")
)
torch.save(
scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")
)
logging.info(
"Saving optimizer and scheduler states to %s", output_dir
)
if global_step % 1000 == 0:
# eval
print('Start eval!')
from data.datasets.websrc import get_websrc_dataset
dataset_web, examples, features = get_websrc_dataset(args, tokenizer, evaluate=True, output_examples=True)
evaluate(args, dataset_web, examples, features, model, tokenizer, global_step)
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
def to_list(tensor):
return tensor.detach().cpu().tolist()
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return ns_text, ns_to_s_map
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
# if verbose_logging:
# logging.info(
# "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logging.info("Length not equal after stripping spaces: '%s' vs '%s'",
orig_ns_text, tok_ns_text)
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logging.info("Couldn't map start position")
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logging.info("Couldn't map end position")
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
class EvalOpts:
r"""
The options which the matrix evaluation process needs.
Arguments:
data_file (str): the SQuAD-style json file of the dataset in evaluation.
root_dir (str): the root directory of the raw WebSRC dataset, which contains the HTML files.
pred_file (str): the prediction file which contain the best predicted answer text of each question from the
model.
tag_pred_file (str): the prediction file which contain the best predicted answer tag id of each question from
the model.
result_file (str): the file to write down the matrix evaluation results of each question.
out_file (str): the file to write down the final matrix evaluation results of the whole dataset.
"""
def __init__(self, data_file, root_dir, pred_file, tag_pred_file, result_file='', out_file=""):
self.data_file = data_file
self.root_dir = root_dir
self.pred_file = pred_file
self.tag_pred_file = tag_pred_file
self.result_file = result_file
self.out_file = out_file
def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case,
output_prediction_file, output_tag_prediction_file,
output_nbest_file, verbose_logging, tokenizer):
r"""
Compute and write down the final results, including the n best results.
Arguments:
all_examples (list[SRCExample]): all the SRC Example of the dataset; note that we only need it to provide the
mapping from example index to the question-answers id.
all_features (list[InputFeatures]): all the features for the input doc spans.
all_results (list[RawResult]): all the results from the models.
n_best_size (int): the number of the n best buffer and the final n best result saved.
max_answer_length (int): constrain the model to predict the answer no longer than it.
do_lower_case (bool): whether the model distinguish upper and lower case of the letters.
output_prediction_file (str): the file which the best answer text predictions will be written to.
output_tag_prediction_file (str): the file which the best answer tag predictions will be written to.
output_nbest_file (str): the file which the n best answer predictions including text, tag, and probabilities
will be written to.
verbose_logging (bool): if true, all of the warnings related to data processing will be printed.
"""
logging.info("Writing predictions to: %s" % output_prediction_file)
logging.info("Writing nbest to: %s" % output_nbest_file)
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "start_index", "end_index", "start_logit", "end_logit", "tag_ids"])
all_predictions = collections.OrderedDict()
all_tag_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
tag_ids = set(feature.token_to_tag_index[start_index: end_index + 1])
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index],
tag_ids=list(tag_ids)))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit", "tag_ids"])
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = _get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit,
tag_ids=pred.tag_ids))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0, tag_ids=[-1]))
assert len(nbest) >= 1
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
output["tag_ids"] = entry.tag_ids
nbest_json.append(output)
assert len(nbest_json) >= 1
best = nbest_json[0]["text"].split()
best = ' '.join([w for w in best
if (w[0] != '<' or w[-1] != '>')
and w != "<end-of-node>"
and w != tokenizer.sep_token
and w != tokenizer.cls_token])
all_predictions[example.qas_id] = best
all_tag_predictions[example.qas_id] = nbest_json[0]["tag_ids"]
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w+") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with open(output_nbest_file, "w+") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
with open(output_tag_prediction_file, 'w+') as writer:
writer.write(json.dumps(all_tag_predictions, indent=4) + '\n')
return
def make_qid_to_has_ans(dataset):
r"""
Pick all the questions which has answer in the dataset and return the list.
"""
qid_to_has_ans = {}
for domain in dataset:
for w in domain['websites']:
for qa in w['qas']:
qid_to_has_ans[qa['id']] = bool(qa['answers'])
return qid_to_has_ans
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def compute_exact(a_gold, a_pred):
r"""
Calculate the exact match.
"""
if normalize_answer(a_gold) == normalize_answer(a_pred):
return 1
return 0
def get_raw_scores(dataset, preds, tag_preds, root_dir):
r"""
Calculate all the three matrix (exact match, f1, POS) for each question.
Arguments:
dataset (dict): the dataset in use.
preds (dict): the answer text prediction for each question in the dataset.
tag_preds (dict): the answer tags prediction for each question in the dataset.
root_dir (str): the base directory for the html files.
Returns:
tuple(dict, dict, dict): exact match, f1, pos scores for each question.
"""
exact_scores = {}
f1_scores = {}
pos_scores = {}
for websites in dataset:
for w in websites['websites']:
f = os.path.join(root_dir, websites['domain'], w['page_id'][0:2], 'processed_data',
w['page_id'] + '.html')
for qa in w['qas']:
qid = qa['id']
gold_answers = [a['text'] for a in qa['answers']
if normalize_answer(a['text'])]
gold_tag_answers = [a['element_id'] for a in qa['answers']]
additional_tag_information = [a['answer_start'] for a in qa['answers']]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = ['']
if qid not in preds:
print('Missing prediction for %s' % qid)
continue
a_pred, t_pred = preds[qid], tag_preds[qid]
# Take max over all gold answers
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
pos_scores[qid] = max(compute_pos(f, t, a, t_pred)
for t, a in zip(gold_tag_answers, additional_tag_information))
return exact_scores, f1_scores, pos_scores
def get_tokens(s):
r"""
Get the word list in the input.
"""
if not s:
return []
return normalize_answer(s).split()
def compute_f1(a_gold, a_pred):
r"""
Calculate the f1 score.
"""
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def compute_pos(f, t_gold, addition, t_pred):
r"""
Calculate the POS score.
Arguments:
f (str): the html file on which the question is based.
t_gold (int): the gold answer tag id provided by the dataset (the value correspond to the key element_id).
addition (int): the addition information used for yes/no question provided by the dataset (the value
corresponding to the key answer_start).
t_pred (list[int]): the tag ids of the tags corresponding the each word in the predicted answer.
Returns:
float: the POS score.
"""
h = BeautifulSoup(open(f), "lxml")
p_gold, e_gold = set(), h.find(tid=t_gold)
if e_gold is None:
if len(t_pred) != 1:
return 0
else:
t = t_pred[0]
e_pred, e_prev = h.find(tid=t), h.find(tid=t-1)
if (e_pred is not None) or (addition == 1 and e_prev is not None) or\
(addition == 0 and e_prev is None):
return 0
else:
return 1
else:
p_gold.add(e_gold['tid'])
for e in e_gold.parents:
if int(e['tid']) < 2:
break
p_gold.add(e['tid'])
p = None
for t in t_pred:
p_pred, e_pred = set(), h.find(tid=t)
if e_pred is not None:
p_pred.add(e_pred['tid'])
if e_pred.name != 'html':
for e in e_pred.parents:
if int(e['tid']) < 2:
break
p_pred.add(e['tid'])
else:
p_pred.add(str(t))
if p is None:
p = p_pred
else:
p = p & p_pred
return len(p_gold & p) / len(p_gold | p)
def make_pages_list(dataset):
r"""
Record all the pages which appears in the dataset and return the list.
"""
pages_list = []
last_page = None
for domain in dataset:
for w in domain['websites']:
for qa in w['qas']:
if last_page != qa['id'][:4]:
last_page = qa['id'][:4]
pages_list.append(last_page)
return pages_list
def make_eval_dict(exact_scores, f1_scores, pos_scores, qid_list=None):
r"""
Make the dictionary to show the evaluation results.
"""
if qid_list is None:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('pos', 100.0 * sum(pos_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
if total == 0:
return collections.OrderedDict([
('exact', 0),
('f1', 0),
('pos', 0),
('total', 0),
])
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('pos', 100.0 * sum(pos_scores[k] for k in qid_list) / total),
('total', total),
])
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
def evaluate_on_squad(opts):
with open(opts.data_file) as f:
dataset_json = json.load(f)
dataset = dataset_json['data']
if isinstance(opts.pred_file, str):
with open(opts.pred_file) as f:
preds = json.load(f)
else:
preds = opts.pred_file
if isinstance(opts.tag_pred_file, str):
with open(opts.tag_pred_file) as f:
tag_preds = json.load(f)
else:
tag_preds = opts.tag_pred_file
qid_to_has_ans = make_qid_to_has_ans(dataset)
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact, f1, pos = get_raw_scores(dataset, preds, tag_preds, opts.root_dir)
out_eval = make_eval_dict(exact, f1, pos)
if has_ans_qids:
has_ans_eval = make_eval_dict(exact, f1, pos, qid_list=has_ans_qids)
merge_eval(out_eval, has_ans_eval, 'HasAns')
if no_ans_qids:
no_ans_eval = make_eval_dict(exact, f1, pos, qid_list=no_ans_qids)
merge_eval(out_eval, no_ans_eval, 'NoAns')
print(json.dumps(out_eval, indent=2))
pages_list, write_eval = make_pages_list(dataset), deepcopy(out_eval)
for p in pages_list:
pages_ans_qids = [k for k, _ in qid_to_has_ans.items() if p in k]
page_eval = make_eval_dict(exact, f1, pos, qid_list=pages_ans_qids)
merge_eval(write_eval, page_eval, p)
if opts.result_file:
with open(opts.result_file, 'w') as f:
w = {}
for k, v in qid_to_has_ans.items():
w[k] = {'exact': exact[k], 'f1': f1[k], 'pos': pos[k]}
json.dump(w, f)
if opts.out_file:
with open(opts.out_file, 'w') as f:
json.dump(write_eval, f)
print('****** result ******')
print(out_eval)
return out_eval
def evaluate(args, dataset_web, examples, features, model, tokenizer, step=0):
gpu_nums = torch.cuda.device_count()
batch = args.batch_per_gpu * gpu_nums
eval_sampler = SequentialSampler(dataset_web)
eval_dataloader = DataLoader(dataset_web, sampler=eval_sampler, batch_size=batch, num_workers=8)
# Eval!
logging.info("***** Running evaluation *****")
logging.info(" Num examples = %d", len(dataset_web))
logging.info(" Batch size = %d", batch)
model = model.cuda()
all_results = []
start_time = timeit.default_timer()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.cuda() for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'xpath_tags_seq': batch[4],
'xpath_subs_seq': batch[5],
}
feature_indices = batch[3]
outputs = model(**inputs)
for i, feature_index in enumerate(feature_indices):
eval_feature = features[feature_index.item()]
unique_id = int(eval_feature.unique_id)
result = RawResult(unique_id=unique_id,
start_logits=to_list(outputs[0][i]),
end_logits=to_list(outputs[1][i]))
all_results.append(result)
eval_time = timeit.default_timer() - start_time
logging.info(" Evaluation done in total %f secs (%f sec per example)", eval_time, eval_time / len(dataset_web))
# Compute predictions
# output_dir = os.path.join(args.output_dir, 'output', args.exp_name, f'step-{global_step}')
output_prediction_file = os.path.join(args.output_dir,"output", args.exp_name, f"predictions_{step}.json")
output_tag_prediction_file = os.path.join(args.output_dir,"output", args.exp_name, f"tag_predictions_{step}.json")
output_nbest_file = os.path.join(args.output_dir,"output", args.exp_name, f"nbest_predictions_{step}.json")
output_result_file = os.path.join(args.output_dir,"output", args.exp_name, f"qas_eval_results_{step}.json")
output_file = os.path.join(args.output_dir,"output", args.exp_name, f"eval_matrix_results_{step}")
write_predictions(examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case,
output_prediction_file, output_tag_prediction_file, output_nbest_file, args.verbose_logging,
tokenizer)
# Evaluate
evaluate_options = EvalOpts(data_file=args.web_eval_file,
root_dir=args.root_dir,
pred_file=output_prediction_file,
tag_pred_file=output_tag_prediction_file,
result_file=output_result_file,
out_file=output_file)
results = evaluate_on_squad(evaluate_options)
return results
|