Tzktz's picture
Upload 7664 files
6fc683c verified
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import os
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.models.vision_transformer import Attention, Block
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_
logger = logging.getLogger(__name__)
class Fp16FixedAttention(Attention):
def cogview_attn(self, attention_scores, alpha=32):
'''
https://arxiv.org/pdf/2105.13290.pdf
Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax).
A replacement of the original nn.Softmax(dim=-1)(attention_scores)
Seems the new attention_probs will result in a slower speed and a little bias
Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison
The smaller atol (e.g., 1e-08), the better.
'''
scaled_attention_scores = attention_scores / alpha
max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1)
# max_value = scaled_attention_scores.amax(dim=(-2, -1)).unsqueeze(-1).unsqueeze(-1)
new_attention_scores = (scaled_attention_scores - max_value) * alpha
return nn.Softmax(dim=-1)(new_attention_scores)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
# attn = attn.softmax(dim=-1).type_as(x)
attn = self.cogview_attn(attn).type_as(x)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Fp16FixedBlock(Block):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__(dim, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop,
attn_drop=attn_drop, drop_path=drop_path, act_layer=act_layer,
norm_layer=norm_layer)
self.attn = Fp16FixedAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
class AdaptedVisionTransformer(VisionTransformer):
def __init__(self, *args, **kwargs):
self.ape = kwargs.pop('ape', 0)
self.mask_ratio = kwargs.pop('mask_ratio', 0.0)
self.patch_size = kwargs.get('patch_size')
self.fp16fixed = kwargs.pop('fp16fixed', False)
weight_init = kwargs.get('weight_init', '')
super().__init__(*args, **kwargs)
if self.ape:
self.pos_embed = nn.Parameter(torch.zeros(1, self.ape + self.num_tokens, self.embed_dim))
if self.fp16fixed:
# img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
# num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
# drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
# act_layer=None, weight_init=''
embed_dim = kwargs.get('embed_dim', 768)
num_heads = kwargs.get('num_heads', 12)
mlp_ratio = kwargs.get('mlp_ratio', 4.)
qkv_bias = kwargs.get('qkv_bias', True)
drop_rate = kwargs.get('drop_rate', 0.)
attn_drop_rate = kwargs.get('attn_drop_rate', 0.)
drop_path_rate = kwargs.get('drop_path_rate', 0.)
depth = kwargs.get('depth', 12)
norm_layer = kwargs.get('norm_layer', partial(nn.LayerNorm, eps=1e-6))
act_layer = kwargs.get('act_layer', nn.GELU)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Fp16FixedBlock(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
for i in range(depth)])
self.init_weights(weight_init)
def forward_features(self, x):
_, _, H, W = x.shape
Wh = H // self.patch_size
Ww = W // self.patch_size
x = self.patch_embed(x)
if self.mask_ratio != 0:
probability_matrix = torch.full(x.shape[:2], self.mask_ratio)
masked_indices = torch.bernoulli(probability_matrix).bool()
x[masked_indices] = 0
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1)
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
if self.ape:
pos_embed_patch_num = int(self.pos_embed.size(1) ** 0.5)
offset = self.num_tokens
adapt_pos_embed = self.pos_embed[:, offset:, :].view(self.pos_embed.shape[0], pos_embed_patch_num, pos_embed_patch_num, self.pos_embed.shape[-1]) # B 24 24 768
adapt_pos_embed = adapt_pos_embed.permute(0, 3, 1, 2)
pos_embed = F.interpolate(adapt_pos_embed, size=(Wh, Ww), mode='bicubic')
pos_embed = pos_embed.flatten(2).transpose(1, 2) # B Wh*Ww C
pos_embed = torch.cat((pos_embed, self.pos_embed[:, :offset, :]), dim=1)
else:
pos_embed = self.pos_embed
input_embedding = x + pos_embed
x = self.pos_drop(input_embedding)
x = self.blocks(x)
x = self.norm(x)
return x, input_embedding
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_distilled_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
img_size=384, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
map_location="cpu", check_hash=True
)
# adapt 224 model to 384
model_seq_len = model.state_dict()['pos_embed'].shape[1]
ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1]
logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape)))
if not model.ape:
if model_seq_len <= ckpt_seq_len:
checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :]
else:
t = model.state_dict()['pos_embed']
t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed']
checkpoint['model']['pos_embed'] = t
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
model = VisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_custom_size(pretrained=False, img_size=384, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
img_size=img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
map_location="cpu", check_hash=True
)
# checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :502, :]
# ape torch.Size([1, 578, 768]) from checkpoint, the shape in current model is torch.Size([1, 1026, 768]).
model_seq_len = model.state_dict()['pos_embed'].shape[1]
ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1]
logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape)))
if not model.ape:
if model_seq_len <= ckpt_seq_len:
checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :]
else:
t = model.state_dict()['pos_embed']
t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed']
checkpoint['model']['pos_embed'] = t
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_base_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
return model
@register_model
def beit_large_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
return model