Spaces:
Sleeping
Sleeping
# Copyright (c) 2015-present, Facebook, Inc. | |
# All rights reserved. | |
import os | |
import logging | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
from timm.models.vision_transformer import VisionTransformer, _cfg | |
from timm.models.vision_transformer import Attention, Block | |
from timm.models.registry import register_model | |
from timm.models.layers import trunc_normal_ | |
logger = logging.getLogger(__name__) | |
class Fp16FixedAttention(Attention): | |
def cogview_attn(self, attention_scores, alpha=32): | |
''' | |
https://arxiv.org/pdf/2105.13290.pdf | |
Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax). | |
A replacement of the original nn.Softmax(dim=-1)(attention_scores) | |
Seems the new attention_probs will result in a slower speed and a little bias | |
Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison | |
The smaller atol (e.g., 1e-08), the better. | |
''' | |
scaled_attention_scores = attention_scores / alpha | |
max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1) | |
# max_value = scaled_attention_scores.amax(dim=(-2, -1)).unsqueeze(-1).unsqueeze(-1) | |
new_attention_scores = (scaled_attention_scores - max_value) * alpha | |
return nn.Softmax(dim=-1)(new_attention_scores) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale | |
# attn = attn.softmax(dim=-1).type_as(x) | |
attn = self.cogview_attn(attn).type_as(x) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Fp16FixedBlock(Block): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__(dim, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, | |
attn_drop=attn_drop, drop_path=drop_path, act_layer=act_layer, | |
norm_layer=norm_layer) | |
self.attn = Fp16FixedAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
class AdaptedVisionTransformer(VisionTransformer): | |
def __init__(self, *args, **kwargs): | |
self.ape = kwargs.pop('ape', 0) | |
self.mask_ratio = kwargs.pop('mask_ratio', 0.0) | |
self.patch_size = kwargs.get('patch_size') | |
self.fp16fixed = kwargs.pop('fp16fixed', False) | |
weight_init = kwargs.get('weight_init', '') | |
super().__init__(*args, **kwargs) | |
if self.ape: | |
self.pos_embed = nn.Parameter(torch.zeros(1, self.ape + self.num_tokens, self.embed_dim)) | |
if self.fp16fixed: | |
# img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
# num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, | |
# drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, | |
# act_layer=None, weight_init='' | |
embed_dim = kwargs.get('embed_dim', 768) | |
num_heads = kwargs.get('num_heads', 12) | |
mlp_ratio = kwargs.get('mlp_ratio', 4.) | |
qkv_bias = kwargs.get('qkv_bias', True) | |
drop_rate = kwargs.get('drop_rate', 0.) | |
attn_drop_rate = kwargs.get('attn_drop_rate', 0.) | |
drop_path_rate = kwargs.get('drop_path_rate', 0.) | |
depth = kwargs.get('depth', 12) | |
norm_layer = kwargs.get('norm_layer', partial(nn.LayerNorm, eps=1e-6)) | |
act_layer = kwargs.get('act_layer', nn.GELU) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Fp16FixedBlock( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, | |
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) | |
for i in range(depth)]) | |
self.init_weights(weight_init) | |
def forward_features(self, x): | |
_, _, H, W = x.shape | |
Wh = H // self.patch_size | |
Ww = W // self.patch_size | |
x = self.patch_embed(x) | |
if self.mask_ratio != 0: | |
probability_matrix = torch.full(x.shape[:2], self.mask_ratio) | |
masked_indices = torch.bernoulli(probability_matrix).bool() | |
x[masked_indices] = 0 | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
if self.dist_token is None: | |
x = torch.cat((cls_token, x), dim=1) | |
else: | |
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) | |
if self.ape: | |
pos_embed_patch_num = int(self.pos_embed.size(1) ** 0.5) | |
offset = self.num_tokens | |
adapt_pos_embed = self.pos_embed[:, offset:, :].view(self.pos_embed.shape[0], pos_embed_patch_num, pos_embed_patch_num, self.pos_embed.shape[-1]) # B 24 24 768 | |
adapt_pos_embed = adapt_pos_embed.permute(0, 3, 1, 2) | |
pos_embed = F.interpolate(adapt_pos_embed, size=(Wh, Ww), mode='bicubic') | |
pos_embed = pos_embed.flatten(2).transpose(1, 2) # B Wh*Ww C | |
pos_embed = torch.cat((pos_embed, self.pos_embed[:, :offset, :]), dim=1) | |
else: | |
pos_embed = self.pos_embed | |
input_embedding = x + pos_embed | |
x = self.pos_drop(input_embedding) | |
x = self.blocks(x) | |
x = self.norm(x) | |
return x, input_embedding | |
def deit_tiny_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_small_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_base_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer(distilled=True, | |
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_small_distilled_patch16_224(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer(distilled=True, | |
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_small_distilled_patch16_384(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer(distilled=True, | |
img_size=384, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth", | |
map_location="cpu", check_hash=True | |
) | |
# adapt 224 model to 384 | |
model_seq_len = model.state_dict()['pos_embed'].shape[1] | |
ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1] | |
logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape))) | |
if not model.ape: | |
if model_seq_len <= ckpt_seq_len: | |
checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :] | |
else: | |
t = model.state_dict()['pos_embed'] | |
t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed'] | |
checkpoint['model']['pos_embed'] = t | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_base_distilled_patch16_224(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer(distilled=True, | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_base_patch16_384(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_base_distilled_patch16_384(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer(distilled=True, | |
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def deit_base_distilled_patch16_custom_size(pretrained=False, img_size=384, **kwargs): | |
model = AdaptedVisionTransformer(distilled=True, | |
img_size=img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth", | |
map_location="cpu", check_hash=True | |
) | |
# checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :502, :] | |
# ape torch.Size([1, 578, 768]) from checkpoint, the shape in current model is torch.Size([1, 1026, 768]). | |
model_seq_len = model.state_dict()['pos_embed'].shape[1] | |
ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1] | |
logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape))) | |
if not model.ape: | |
if model_seq_len <= ckpt_seq_len: | |
checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :] | |
else: | |
t = model.state_dict()['pos_embed'] | |
t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed'] | |
checkpoint['model']['pos_embed'] = t | |
model.load_state_dict(checkpoint["model"]) | |
return model | |
def beit_base_patch16_384(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer( | |
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
return model | |
def beit_large_patch16_384(pretrained=False, **kwargs): | |
model = AdaptedVisionTransformer( | |
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=False, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = _cfg() | |
return model |