Spaces:
Sleeping
Sleeping
File size: 14,295 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
import os
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.vision_transformer import VisionTransformer, _cfg
from timm.models.vision_transformer import Attention, Block
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_
logger = logging.getLogger(__name__)
class Fp16FixedAttention(Attention):
def cogview_attn(self, attention_scores, alpha=32):
'''
https://arxiv.org/pdf/2105.13290.pdf
Section 2.4 Stabilization of training: Precision Bottleneck Relaxation (PB-Relax).
A replacement of the original nn.Softmax(dim=-1)(attention_scores)
Seems the new attention_probs will result in a slower speed and a little bias
Can use torch.allclose(standard_attention_probs, cogview_attention_probs, atol=1e-08) for comparison
The smaller atol (e.g., 1e-08), the better.
'''
scaled_attention_scores = attention_scores / alpha
max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1)
# max_value = scaled_attention_scores.amax(dim=(-2, -1)).unsqueeze(-1).unsqueeze(-1)
new_attention_scores = (scaled_attention_scores - max_value) * alpha
return nn.Softmax(dim=-1)(new_attention_scores)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
# attn = attn.softmax(dim=-1).type_as(x)
attn = self.cogview_attn(attn).type_as(x)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Fp16FixedBlock(Block):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__(dim, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop,
attn_drop=attn_drop, drop_path=drop_path, act_layer=act_layer,
norm_layer=norm_layer)
self.attn = Fp16FixedAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
class AdaptedVisionTransformer(VisionTransformer):
def __init__(self, *args, **kwargs):
self.ape = kwargs.pop('ape', 0)
self.mask_ratio = kwargs.pop('mask_ratio', 0.0)
self.patch_size = kwargs.get('patch_size')
self.fp16fixed = kwargs.pop('fp16fixed', False)
weight_init = kwargs.get('weight_init', '')
super().__init__(*args, **kwargs)
if self.ape:
self.pos_embed = nn.Parameter(torch.zeros(1, self.ape + self.num_tokens, self.embed_dim))
if self.fp16fixed:
# img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
# num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
# drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
# act_layer=None, weight_init=''
embed_dim = kwargs.get('embed_dim', 768)
num_heads = kwargs.get('num_heads', 12)
mlp_ratio = kwargs.get('mlp_ratio', 4.)
qkv_bias = kwargs.get('qkv_bias', True)
drop_rate = kwargs.get('drop_rate', 0.)
attn_drop_rate = kwargs.get('attn_drop_rate', 0.)
drop_path_rate = kwargs.get('drop_path_rate', 0.)
depth = kwargs.get('depth', 12)
norm_layer = kwargs.get('norm_layer', partial(nn.LayerNorm, eps=1e-6))
act_layer = kwargs.get('act_layer', nn.GELU)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Fp16FixedBlock(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
for i in range(depth)])
self.init_weights(weight_init)
def forward_features(self, x):
_, _, H, W = x.shape
Wh = H // self.patch_size
Ww = W // self.patch_size
x = self.patch_embed(x)
if self.mask_ratio != 0:
probability_matrix = torch.full(x.shape[:2], self.mask_ratio)
masked_indices = torch.bernoulli(probability_matrix).bool()
x[masked_indices] = 0
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1)
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
if self.ape:
pos_embed_patch_num = int(self.pos_embed.size(1) ** 0.5)
offset = self.num_tokens
adapt_pos_embed = self.pos_embed[:, offset:, :].view(self.pos_embed.shape[0], pos_embed_patch_num, pos_embed_patch_num, self.pos_embed.shape[-1]) # B 24 24 768
adapt_pos_embed = adapt_pos_embed.permute(0, 3, 1, 2)
pos_embed = F.interpolate(adapt_pos_embed, size=(Wh, Ww), mode='bicubic')
pos_embed = pos_embed.flatten(2).transpose(1, 2) # B Wh*Ww C
pos_embed = torch.cat((pos_embed, self.pos_embed[:, :offset, :]), dim=1)
else:
pos_embed = self.pos_embed
input_embedding = x + pos_embed
x = self.pos_drop(input_embedding)
x = self.blocks(x)
x = self.norm(x)
return x, input_embedding
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
model = VisionTransformer(
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_distilled_patch16_224(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_small_distilled_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
img_size=384, patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth",
map_location="cpu", check_hash=True
)
# adapt 224 model to 384
model_seq_len = model.state_dict()['pos_embed'].shape[1]
ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1]
logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape)))
if not model.ape:
if model_seq_len <= ckpt_seq_len:
checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :]
else:
t = model.state_dict()['pos_embed']
t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed']
checkpoint['model']['pos_embed'] = t
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_224(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
model = VisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
map_location="cpu", check_hash=True
)
model.load_state_dict(checkpoint["model"])
return model
@register_model
def deit_base_distilled_patch16_custom_size(pretrained=False, img_size=384, **kwargs):
model = AdaptedVisionTransformer(distilled=True,
img_size=img_size, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
if pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth",
map_location="cpu", check_hash=True
)
# checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :502, :]
# ape torch.Size([1, 578, 768]) from checkpoint, the shape in current model is torch.Size([1, 1026, 768]).
model_seq_len = model.state_dict()['pos_embed'].shape[1]
ckpt_seq_len = checkpoint['model']['pos_embed'].shape[1]
logger.warning('Deit load {:d} seq len to {:d} APE {}'.format(ckpt_seq_len, model_seq_len, str(model.ape)))
if not model.ape:
if model_seq_len <= ckpt_seq_len:
checkpoint['model']['pos_embed'] = checkpoint['model']['pos_embed'][:, :model_seq_len, :]
else:
t = model.state_dict()['pos_embed']
t[:, :ckpt_seq_len, :] = checkpoint['model']['pos_embed']
checkpoint['model']['pos_embed'] = t
model.load_state_dict(checkpoint["model"])
return model
@register_model
def beit_base_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
return model
@register_model
def beit_large_patch16_384(pretrained=False, **kwargs):
model = AdaptedVisionTransformer(
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=False,
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
model.default_cfg = _cfg()
return model |