Tzktz's picture
Upload 7664 files
6fc683c verified
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import os
import torch
from torch import nn
from torch.nn.modules.loss import _Loss
import torch.nn.functional as F
from transformers import BertConfig
from transformers.modeling_bert import \
BertPreTrainedModel, BertSelfOutput, BertIntermediate, BertOutput, BertPredictionHeadTransform
from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers.modeling_xlm_roberta import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from s2s_ft.config import BertForSeq2SeqConfig
from s2s_ft.convert_state_dict import get_checkpoint_from_transformer_cache, state_dict_convert
logger = logging.getLogger(__name__)
BertLayerNorm = torch.nn.LayerNorm
UNILM_PRETRAINED_MODEL_ARCHIVE_MAP = {
'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D"
}
MINILM_PRETRAINED_MODEL_ARCHIVE_MAP = {
'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
}
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/pytorch_model.bin',
'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/pytorch_model.bin'
}
LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json',
'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json'
}
class LayoutlmConfig(BertConfig):
pretrained_config_archive_map = LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP
model_type = "bert"
def __init__(self, max_2d_position_embeddings=1024, **kwargs):
super().__init__(**kwargs)
self.max_2d_position_embeddings = max_2d_position_embeddings
class BertPreTrainedForSeq2SeqModel(BertPreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = BertForSeq2SeqConfig
supported_convert_pretrained_model_archive_map = {
"bert": BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
"roberta": ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
"xlm-roberta": XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
"unilm": UNILM_PRETRAINED_MODEL_ARCHIVE_MAP,
"minilm": MINILM_PRETRAINED_MODEL_ARCHIVE_MAP,
"layoutlm": LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP,
}
base_model_prefix = "bert_for_seq2seq"
pretrained_model_archive_map = {
**ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
**XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
**BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
**UNILM_PRETRAINED_MODEL_ARCHIVE_MAP,
**MINILM_PRETRAINED_MODEL_ARCHIVE_MAP,
**LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP,
}
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, reuse_position_embedding=None,
*model_args, **kwargs):
model_type = kwargs.pop('model_type', None)
if model_type is not None and "state_dict" not in kwargs:
if model_type in cls.supported_convert_pretrained_model_archive_map:
pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[model_type]
if pretrained_model_name_or_path in pretrained_model_archive_map:
state_dict = get_checkpoint_from_transformer_cache(
archive_file=pretrained_model_archive_map[pretrained_model_name_or_path],
pretrained_model_name_or_path=pretrained_model_name_or_path,
pretrained_model_archive_map=pretrained_model_archive_map,
cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None),
proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None),
)
state_dict = state_dict_convert[model_type](state_dict)
kwargs["state_dict"] = state_dict
elif os.path.isfile(pretrained_model_name_or_path):
kwargs["state_dict"] = torch.load(pretrained_model_name_or_path, map_location='cpu')
if kwargs["state_dict"] is None:
logger.info("s2s-ft does't support the model !")
raise NotImplementedError()
config = kwargs["config"]
state_dict = kwargs["state_dict"]
# initialize new position embeddings (From Microsoft/UniLM)
_k = 'bert.embeddings.position_embeddings.weight'
if _k in state_dict:
if config.max_position_embeddings > state_dict[_k].shape[0]:
logger.info("Resize > position embeddings !")
old_vocab_size = state_dict[_k].shape[0]
new_position_embedding = state_dict[_k].data.new_tensor(torch.ones(
size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True)
new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range)
max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size
shift = 0
while shift < max_range:
delta = min(old_vocab_size, max_range - shift)
new_position_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :]
logger.info(" CP [%d ~ %d] into [%d ~ %d] " % (0, delta, shift, shift + delta))
shift += delta
state_dict[_k] = new_position_embedding.data
del new_position_embedding
elif config.max_position_embeddings < state_dict[_k].shape[0]:
logger.info("Resize < position embeddings !")
old_vocab_size = state_dict[_k].shape[0]
new_position_embedding = state_dict[_k].data.new_tensor(torch.ones(
size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True)
new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range)
new_position_embedding.data.copy_(state_dict[_k][:config.max_position_embeddings, :])
state_dict[_k] = new_position_embedding.data
del new_position_embedding
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
else:
self.token_type_embeddings = None
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = inputs_embeds + position_embeddings
if self.token_type_embeddings:
embeddings = embeddings + self.token_type_embeddings(token_type_ids)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class LayoutlmEmbeddings(nn.Module):
def __init__(self, config):
super(LayoutlmEmbeddings, self).__init__()
self.only_layout_flag = config.layoutlm_only_layout
if not config.layoutlm_only_layout:
self.word_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size, padding_idx=0
)
else:
self.word_embeddings = None
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
self.x_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.y_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.h_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
self.w_position_embeddings = nn.Embedding(
config.max_2d_position_embeddings, config.hidden_size
)
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
else:
self.token_type_embeddings = None
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self,
input_ids,
bbox,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(
seq_length, dtype=torch.long, device=input_ids.device
)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
h_position_embeddings = self.h_position_embeddings(
bbox[:, :, 3] - bbox[:, :, 1]
)
w_position_embeddings = self.w_position_embeddings(
bbox[:, :, 2] - bbox[:, :, 0]
)
position_embeddings = self.position_embeddings(position_ids)
embeddings = (
left_position_embeddings
+ upper_position_embeddings
+ right_position_embeddings
+ lower_position_embeddings
+ h_position_embeddings
+ w_position_embeddings
+ position_embeddings
# + token_type_embeddings
)
if not self.only_layout_flag:
words_embeddings = self.word_embeddings(input_ids)
embeddings = embeddings + words_embeddings
if self.token_type_embeddings:
embeddings = embeddings + self.token_type_embeddings(token_type_ids)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = config.output_attentions
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def multi_head_attention(self, query, key, value, attention_mask):
query_layer = self.transpose_for_scores(query)
key_layer = self.transpose_for_scores(key)
value_layer = self.transpose_for_scores(value)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return (context_layer, attention_probs) if self.output_attentions else (context_layer,)
def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None):
mixed_query_layer = self.query(hidden_states)
if split_lengths:
assert not self.output_attentions
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
if encoder_hidden_states is not None:
mixed_key_layer = self.key(encoder_hidden_states)
mixed_value_layer = self.value(encoder_hidden_states)
else:
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
if split_lengths:
query_parts = torch.split(mixed_query_layer, split_lengths, dim=1)
key_parts = torch.split(mixed_key_layer, split_lengths, dim=1)
value_parts = torch.split(mixed_value_layer, split_lengths, dim=1)
key = None
value = None
outputs = []
sum_length = 0
for (query, _key, _value, part_length) in zip(query_parts, key_parts, value_parts, split_lengths):
key = _key if key is None else torch.cat((key, _key), dim=1)
value = _value if value is None else torch.cat((value, _value), dim=1)
sum_length += part_length
outputs.append(self.multi_head_attention(
query, key, value, attention_mask[:, :, sum_length - part_length: sum_length, :sum_length]
)[0])
outputs = (torch.cat(outputs, dim=1), )
else:
outputs = self.multi_head_attention(
mixed_query_layer, mixed_key_layer, mixed_value_layer, attention_mask)
return outputs
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None):
self_outputs = self.self(
hidden_states, attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states, split_lengths=split_lengths)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask=None, split_lengths=None):
self_attention_outputs = self.attention(
hidden_states, attention_mask, split_lengths=split_lengths)
attention_output = self_attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + self_attention_outputs[1:]
return outputs
class BertEncoder(nn.Module):
def __init__(self, config):
super(BertEncoder, self).__init__()
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, attention_mask=None, split_lengths=None):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, attention_mask, split_lengths=split_lengths)
hidden_states = layer_outputs[0]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
class BertModel(BertPreTrainedForSeq2SeqModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the model.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
super(BertModel, self).__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None,
position_ids=None, inputs_embeds=None, split_lengths=None, return_emb=False):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if attention_mask.dim() == 2:
extended_attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds)
encoder_outputs = self.encoder(
embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths)
sequence_output = encoder_outputs[0]
outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here
if return_emb:
outputs += (embedding_output,)
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
class LayoutlmModel(BertPreTrainedForSeq2SeqModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the model.
**pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during Bert pretraining. This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
super(LayoutlmModel, self).__init__(config)
self.config = config
self.embeddings = LayoutlmEmbeddings(config)
self.encoder = BertEncoder(config)
def forward(self,
input_ids=None,
bbox=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
split_lengths=None,
return_emb=False):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if attention_mask.dim() == 2:
extended_attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# embedding_output = self.embeddings(
# input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds)
embedding_output = self.embeddings(
input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids
)
encoder_outputs = self.encoder(
embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths)
sequence_output = encoder_outputs[0]
outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here
if return_emb:
outputs += (embedding_output,)
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
class LabelSmoothingLoss(_Loss):
"""
With label smoothing,
KL-divergence between q_{smoothed ground truth prob.}(w)
and p_{prob. computed by model}(w) is minimized.
"""
def __init__(self, label_smoothing=0, tgt_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'):
assert 0.0 < label_smoothing <= 1.0
self.ignore_index = ignore_index
super(LabelSmoothingLoss, self).__init__(
size_average=size_average, reduce=reduce, reduction=reduction)
assert label_smoothing > 0
assert tgt_size > 0
smoothing_value = label_smoothing / (tgt_size - 2)
one_hot = torch.full((tgt_size,), smoothing_value)
one_hot[self.ignore_index] = 0
self.register_buffer('one_hot', one_hot.unsqueeze(0))
self.confidence = 1.0 - label_smoothing
self.tgt_size = tgt_size
def forward(self, output, target):
"""
output (FloatTensor): batch_size * num_pos * n_classes
target (LongTensor): batch_size * num_pos
"""
assert self.tgt_size == output.size(2)
batch_size, num_pos = target.size(0), target.size(1)
output = output.view(-1, self.tgt_size)
target = target.view(-1)
model_prob = self.one_hot.float().repeat(target.size(0), 1)
model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0)
return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2)
class LayoutlmSPLMPredictionHead(nn.Module):
def __init__(self, config, src_len):
super(LayoutlmSPLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
self.bias = nn.Parameter(torch.zeros(src_len))
def forward(self, hidden_states, src_emb):
hidden_states = self.transform(hidden_states)
hidden_states = torch.einsum('btf,bsf->bts', hidden_states, src_emb) + self.bias
# hidden_states = F.linear(hidden_states, weight=src_emb, bias=self.bias)
return hidden_states
class LayoutlmSPOnlyMLMHead(nn.Module):
def __init__(self, config, src_len):
super(LayoutlmSPOnlyMLMHead, self).__init__()
self.predictions = LayoutlmSPLMPredictionHead(config, src_len=src_len)
def forward(self, sequence_output, src_emb):
prediction_scores = self.predictions(sequence_output, src_emb=src_emb)
return prediction_scores
class LayoutlmForSequenceToSequence(BertPreTrainedForSeq2SeqModel):
def __init__(self, config):
super(LayoutlmForSequenceToSequence, self).__init__(config)
if config.base_model_type == 'layoutlm':
self.bert = LayoutlmModel(config)
else:
self.bert = BertModel(config)
self.cls = LayoutlmSPOnlyMLMHead(config, src_len=config.max_source_length)
self.init_weights()
self.log_softmax = nn.LogSoftmax()
# setattr(config, 'label_smoothing', 0.1)
self.source_type_id = config.source_type_id
self.target_type_id = config.target_type_id
if config.label_smoothing > 0:
self.crit_mask_lm_smoothed = LabelSmoothingLoss(
config.label_smoothing, config.max_source_length, ignore_index=0, reduction='none')
self.crit_mask_lm = None
else:
self.crit_mask_lm_smoothed = None
self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none', ignore_index=0)
@staticmethod
def create_mask_and_position_ids(num_tokens, max_len, offset=None):
base_position_matrix = torch.arange(
0, max_len, dtype=num_tokens.dtype, device=num_tokens.device).view(1, -1)
mask = (base_position_matrix < num_tokens.view(-1, 1)).type_as(num_tokens)
if offset is not None:
base_position_matrix = base_position_matrix + offset.view(-1, 1)
position_ids = base_position_matrix * mask
return mask, position_ids
@staticmethod
def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids):
weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids, -target_span_ids), dim=1)
from_weight = weight.unsqueeze(-1)
to_weight = weight.unsqueeze(1)
true_tokens = (0 <= to_weight) & (torch.cat((source_mask, target_mask, target_mask), dim=1) == 1).unsqueeze(1)
true_tokens_mask = (from_weight >= 0) & true_tokens & (to_weight <= from_weight)
pseudo_tokens_mask = (from_weight < 0) & true_tokens & (-to_weight > from_weight)
pseudo_tokens_mask = pseudo_tokens_mask | ((from_weight < 0) & (to_weight == from_weight))
return (true_tokens_mask | pseudo_tokens_mask).type_as(source_mask)
def forward(self, source_idxys, target_idxys, target_index, pseudo_idxys, num_source_tokens, num_target_tokens,
target_span_ids=None):
source_len = source_idxys.size(1)
target_len = target_idxys.size(1)
pseudo_len = pseudo_idxys.size(1)
assert target_len == pseudo_len
assert source_len > 0 and target_len > 0
split_lengths = (source_len, target_len, pseudo_len)
if self.config.base_model_type == 'layoutlm':
source_xys = source_idxys[:, :, 1:]
target_xys = target_idxys[:, :, 1:]
pseudo_xys = pseudo_idxys[:, :, 1:]
input_xys = torch.cat((source_xys, target_xys, pseudo_xys), dim=1)
source_ids = source_idxys[:, :, 0]
target_ids = target_idxys[:, :, 0]
pseudo_ids = pseudo_idxys[:, :, 0]
else:
source_ids = source_idxys
target_ids = target_idxys
pseudo_ids = pseudo_idxys
input_xys = None
input_ids = torch.cat((source_ids, target_ids, pseudo_ids), dim=1)
token_type_ids = torch.cat(
(torch.ones_like(source_ids) * self.source_type_id,
torch.ones_like(target_ids) * self.target_type_id,
torch.ones_like(pseudo_ids) * self.target_type_id), dim=1)
source_mask, source_position_ids = \
self.create_mask_and_position_ids(num_source_tokens, source_len)
target_mask, target_position_ids = \
self.create_mask_and_position_ids(num_target_tokens, target_len, offset=num_source_tokens)
position_ids = torch.cat((source_position_ids, target_position_ids, target_position_ids), dim=1)
if target_span_ids is None:
target_span_ids = target_position_ids
attention_mask = self.create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids)
if self.config.base_model_type == 'layoutlm':
outputs = self.bert(
input_ids, input_xys, attention_mask=attention_mask, token_type_ids=token_type_ids,
position_ids=position_ids, split_lengths=split_lengths, return_emb=True)
else:
outputs = self.bert(
input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
position_ids=position_ids, split_lengths=split_lengths, return_emb=True)
sequence_output = outputs[0]
pseudo_sequence_output = sequence_output[:, source_len + target_len:, ]
sequence_embedding = outputs[-1]
source_embedding = sequence_embedding[:, :source_len, :]
def loss_mask_and_normalize(loss, mask):
mask = mask.type_as(loss)
loss = loss * mask
denominator = torch.sum(mask) + 1e-5
return (loss / denominator).sum()
# TODO: do we need to mask the impossible pos with the real input length
prediction_scores_masked = self.cls(pseudo_sequence_output, source_embedding)
if self.crit_mask_lm_smoothed:
masked_lm_loss = self.crit_mask_lm_smoothed(
F.log_softmax(prediction_scores_masked.float(), dim=-1), target_index)
else:
masked_lm_loss = self.crit_mask_lm(
prediction_scores_masked.transpose(1, 2).float(), target_index)
pseudo_lm_loss = loss_mask_and_normalize(
masked_lm_loss.float(), target_mask)
return pseudo_lm_loss