File size: 40,013 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import math
import os

import torch
from torch import nn
from torch.nn.modules.loss import _Loss
import torch.nn.functional as F
from transformers import BertConfig

from transformers.modeling_bert import \
    BertPreTrainedModel, BertSelfOutput, BertIntermediate, BertOutput, BertPredictionHeadTransform
from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from transformers.modeling_xlm_roberta import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP

from s2s_ft.config import BertForSeq2SeqConfig
from s2s_ft.convert_state_dict import get_checkpoint_from_transformer_cache, state_dict_convert

logger = logging.getLogger(__name__)

BertLayerNorm = torch.nn.LayerNorm

UNILM_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'unilm-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
    'unilm-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
    'unilm1-base-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-base-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
    'unilm1-large-cased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1-large-cased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
    'unilm1.2-base-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/unilm1.2-base-uncased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D"
}

MINILM_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'minilm-l12-h384-uncased': "https://conversationhub.blob.core.windows.net/beit-share-public/ckpt/minilm-l12-h384-uncased.bin?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D",
}

LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/pytorch_model.bin',
    'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/pytorch_model.bin'
}

LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'layoutlm-base-uncased': 'https://huggingface.co/microsoft/layoutlm-base-uncased/resolve/main/config.json',
    'layoutlm-large-uncased': 'https://huggingface.co/microsoft/layoutlm-large-uncased/resolve/main/config.json'
}


class LayoutlmConfig(BertConfig):
    pretrained_config_archive_map = LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP
    model_type = "bert"

    def __init__(self, max_2d_position_embeddings=1024, **kwargs):
        super().__init__(**kwargs)
        self.max_2d_position_embeddings = max_2d_position_embeddings


class BertPreTrainedForSeq2SeqModel(BertPreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = BertForSeq2SeqConfig
    supported_convert_pretrained_model_archive_map = {
        "bert": BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        "roberta": ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
        "xlm-roberta": XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, 
        "unilm": UNILM_PRETRAINED_MODEL_ARCHIVE_MAP,
        "minilm": MINILM_PRETRAINED_MODEL_ARCHIVE_MAP,
        "layoutlm": LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP,
    }
    base_model_prefix = "bert_for_seq2seq"
    pretrained_model_archive_map = {
        **ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
        **XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, 
        **BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
        **UNILM_PRETRAINED_MODEL_ARCHIVE_MAP,
        **MINILM_PRETRAINED_MODEL_ARCHIVE_MAP,
        **LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP,
    }

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, reuse_position_embedding=None,
                        *model_args, **kwargs):
        model_type = kwargs.pop('model_type', None)
        if model_type is not None and "state_dict" not in kwargs:
            if model_type in cls.supported_convert_pretrained_model_archive_map:
                pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[model_type]
                if pretrained_model_name_or_path in pretrained_model_archive_map:
                    state_dict = get_checkpoint_from_transformer_cache(
                        archive_file=pretrained_model_archive_map[pretrained_model_name_or_path],
                        pretrained_model_name_or_path=pretrained_model_name_or_path,
                        pretrained_model_archive_map=pretrained_model_archive_map,
                        cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None),
                        proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None),
                    )
                    state_dict = state_dict_convert[model_type](state_dict)
                    kwargs["state_dict"] = state_dict
                elif os.path.isfile(pretrained_model_name_or_path):
                    kwargs["state_dict"] = torch.load(pretrained_model_name_or_path, map_location='cpu')

        if kwargs["state_dict"] is None:
            logger.info("s2s-ft does't support the model !")
            raise NotImplementedError()

        config = kwargs["config"]
        state_dict = kwargs["state_dict"]
        # initialize new position embeddings (From Microsoft/UniLM)
        _k = 'bert.embeddings.position_embeddings.weight'
        if _k in state_dict:
            if config.max_position_embeddings > state_dict[_k].shape[0]:
                logger.info("Resize > position embeddings !")
                old_vocab_size = state_dict[_k].shape[0]
                new_position_embedding = state_dict[_k].data.new_tensor(torch.ones(
                    size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
                new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True)
                new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range)
                max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size
                shift = 0
                while shift < max_range:
                    delta = min(old_vocab_size, max_range - shift)
                    new_position_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :]
                    logger.info("  CP [%d ~ %d] into [%d ~ %d]  " % (0, delta, shift, shift + delta))
                    shift += delta
                state_dict[_k] = new_position_embedding.data
                del new_position_embedding
            elif config.max_position_embeddings < state_dict[_k].shape[0]:
                logger.info("Resize < position embeddings !")
                old_vocab_size = state_dict[_k].shape[0]
                new_position_embedding = state_dict[_k].data.new_tensor(torch.ones(
                    size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float)
                new_position_embedding = nn.Parameter(data=new_position_embedding, requires_grad=True)
                new_position_embedding.data.normal_(mean=0.0, std=config.initializer_range)
                new_position_embedding.data.copy_(state_dict[_k][:config.max_position_embeddings, :])
                state_dict[_k] = new_position_embedding.data
                del new_position_embedding

        return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        if config.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
        else:
            self.token_type_embeddings = None

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]
        device = input_ids.device if input_ids is not None else inputs_embeds.device
        if position_ids is None:
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(input_shape)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = inputs_embeds + position_embeddings

        if self.token_type_embeddings:
            embeddings = embeddings + self.token_type_embeddings(token_type_ids)

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class LayoutlmEmbeddings(nn.Module):
    def __init__(self, config):
        super(LayoutlmEmbeddings, self).__init__()

        self.only_layout_flag = config.layoutlm_only_layout

        if not config.layoutlm_only_layout:
            self.word_embeddings = nn.Embedding(
                config.vocab_size, config.hidden_size, padding_idx=0
            )
        else:
            self.word_embeddings = None

        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size
        )

        self.x_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.y_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.h_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        self.w_position_embeddings = nn.Embedding(
            config.max_2d_position_embeddings, config.hidden_size
        )
        if config.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
        else:
            self.token_type_embeddings = None

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self,
        input_ids,
        bbox,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
    ):
        seq_length = input_ids.size(1)
        if position_ids is None:
            position_ids = torch.arange(
                seq_length, dtype=torch.long, device=input_ids.device
            )
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
        upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
        right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
        lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
        h_position_embeddings = self.h_position_embeddings(
            bbox[:, :, 3] - bbox[:, :, 1]
        )
        w_position_embeddings = self.w_position_embeddings(
            bbox[:, :, 2] - bbox[:, :, 0]
        )

        position_embeddings = self.position_embeddings(position_ids)

        embeddings = (
                left_position_embeddings
                + upper_position_embeddings
                + right_position_embeddings
                + lower_position_embeddings
                + h_position_embeddings
                + w_position_embeddings
                + position_embeddings
                # + token_type_embeddings
        )

        if not self.only_layout_flag:
            words_embeddings = self.word_embeddings(input_ids)
            embeddings = embeddings + words_embeddings

        if self.token_type_embeddings:
            embeddings = embeddings + self.token_type_embeddings(token_type_ids)

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
    def __init__(self, config):
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def multi_head_attention(self, query, key, value, attention_mask):
        query_layer = self.transpose_for_scores(query)
        key_layer = self.transpose_for_scores(key)
        value_layer = self.transpose_for_scores(value)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)
        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return (context_layer, attention_probs) if self.output_attentions else (context_layer,)

    def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None):
        mixed_query_layer = self.query(hidden_states)
        if split_lengths:
            assert not self.output_attentions

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
        else:
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        if split_lengths:
            query_parts = torch.split(mixed_query_layer, split_lengths, dim=1)
            key_parts = torch.split(mixed_key_layer, split_lengths, dim=1)
            value_parts = torch.split(mixed_value_layer, split_lengths, dim=1)

            key = None
            value = None
            outputs = []
            sum_length = 0
            for (query, _key, _value, part_length) in zip(query_parts, key_parts, value_parts, split_lengths):
                key = _key if key is None else torch.cat((key, _key), dim=1)
                value = _value if value is None else torch.cat((value, _value), dim=1)
                sum_length += part_length
                outputs.append(self.multi_head_attention(
                    query, key, value, attention_mask[:, :, sum_length - part_length: sum_length, :sum_length]
                )[0])
            outputs = (torch.cat(outputs, dim=1), )
        else:
            outputs = self.multi_head_attention(
                mixed_query_layer, mixed_key_layer, mixed_value_layer, attention_mask)
        return outputs


class BertAttention(nn.Module):
    def __init__(self, config):
        super(BertAttention, self).__init__()
        self.self = BertSelfAttention(config)
        self.output = BertSelfOutput(config)

    def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None):
        self_outputs = self.self(
            hidden_states, attention_mask=attention_mask,
            encoder_hidden_states=encoder_hidden_states, split_lengths=split_lengths)
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


class BertLayer(nn.Module):
    def __init__(self, config):
        super(BertLayer, self).__init__()
        self.attention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask=None, split_lengths=None):
        self_attention_outputs = self.attention(
            hidden_states, attention_mask, split_lengths=split_lengths)
        attention_output = self_attention_outputs[0]

        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output,) + self_attention_outputs[1:]
        return outputs


class BertEncoder(nn.Module):
    def __init__(self, config):
        super(BertEncoder, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states, attention_mask=None, split_lengths=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(hidden_states, attention_mask, split_lengths=split_lengths)
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)


class BertModel(BertPreTrainedForSeq2SeqModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config):
        super(BertModel, self).__init__(config)
        self.config = config

        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)

    def forward(self, input_ids=None, attention_mask=None, token_type_ids=None,
                position_ids=None, inputs_embeds=None, split_lengths=None, return_emb=False):
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]

        # Provided a padding mask of dimensions [batch_size, seq_length]
        # - if the model is a decoder, apply a causal mask in addition to the padding mask
        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if attention_mask.dim() == 2:
            extended_attention_mask = attention_mask[:, None, None, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds)
        encoder_outputs = self.encoder(
            embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths)
        sequence_output = encoder_outputs[0]

        outputs = (sequence_output, ) + encoder_outputs[1:]  # add hidden_states and attentions if they are here

        if return_emb:
            outputs += (embedding_output,)

        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)


class LayoutlmModel(BertPreTrainedForSeq2SeqModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config):
        super(LayoutlmModel, self).__init__(config)
        self.config = config

        self.embeddings = LayoutlmEmbeddings(config)
        self.encoder = BertEncoder(config)

    def forward(self,
                input_ids=None,
                bbox=None,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                inputs_embeds=None,
                split_lengths=None,
                return_emb=False):

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]

        # Provided a padding mask of dimensions [batch_size, seq_length]
        # - if the model is a decoder, apply a causal mask in addition to the padding mask
        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if attention_mask.dim() == 2:
            extended_attention_mask = attention_mask[:, None, None, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # embedding_output = self.embeddings(
        #     input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds)
        embedding_output = self.embeddings(
            input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids
        )
        encoder_outputs = self.encoder(
            embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths)
        sequence_output = encoder_outputs[0]

        outputs = (sequence_output, ) + encoder_outputs[1:]  # add hidden_states and attentions if they are here

        if return_emb:
            outputs += (embedding_output,)

        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)


class LabelSmoothingLoss(_Loss):
    """
    With label smoothing,
    KL-divergence between q_{smoothed ground truth prob.}(w)
    and p_{prob. computed by model}(w) is minimized.
    """

    def __init__(self, label_smoothing=0, tgt_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'):
        assert 0.0 < label_smoothing <= 1.0
        self.ignore_index = ignore_index
        super(LabelSmoothingLoss, self).__init__(
            size_average=size_average, reduce=reduce, reduction=reduction)

        assert label_smoothing > 0
        assert tgt_size > 0

        smoothing_value = label_smoothing / (tgt_size - 2)
        one_hot = torch.full((tgt_size,), smoothing_value)
        one_hot[self.ignore_index] = 0
        self.register_buffer('one_hot', one_hot.unsqueeze(0))
        self.confidence = 1.0 - label_smoothing
        self.tgt_size = tgt_size

    def forward(self, output, target):
        """
        output (FloatTensor): batch_size * num_pos * n_classes
        target (LongTensor): batch_size * num_pos
        """
        assert self.tgt_size == output.size(2)
        batch_size, num_pos = target.size(0), target.size(1)
        output = output.view(-1, self.tgt_size)
        target = target.view(-1)
        model_prob = self.one_hot.float().repeat(target.size(0), 1)
        model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
        model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0)

        return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2)


class LayoutlmSPLMPredictionHead(nn.Module):
    def __init__(self, config, src_len):
        super(LayoutlmSPLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        self.bias = nn.Parameter(torch.zeros(src_len))

    def forward(self, hidden_states, src_emb):
        hidden_states = self.transform(hidden_states)
        hidden_states = torch.einsum('btf,bsf->bts', hidden_states, src_emb) + self.bias
        # hidden_states = F.linear(hidden_states, weight=src_emb, bias=self.bias)
        return hidden_states


class LayoutlmSPOnlyMLMHead(nn.Module):
    def __init__(self, config, src_len):
        super(LayoutlmSPOnlyMLMHead, self).__init__()
        self.predictions = LayoutlmSPLMPredictionHead(config, src_len=src_len)

    def forward(self, sequence_output, src_emb):
        prediction_scores = self.predictions(sequence_output, src_emb=src_emb)
        return prediction_scores


class LayoutlmForSequenceToSequence(BertPreTrainedForSeq2SeqModel):
    def __init__(self, config):
        super(LayoutlmForSequenceToSequence, self).__init__(config)
        if config.base_model_type == 'layoutlm':
            self.bert = LayoutlmModel(config)
        else:
            self.bert = BertModel(config)
        self.cls = LayoutlmSPOnlyMLMHead(config, src_len=config.max_source_length)
        self.init_weights()

        self.log_softmax = nn.LogSoftmax()

        # setattr(config, 'label_smoothing', 0.1)
        self.source_type_id = config.source_type_id
        self.target_type_id = config.target_type_id

        if config.label_smoothing > 0:
            self.crit_mask_lm_smoothed = LabelSmoothingLoss(
                config.label_smoothing, config.max_source_length, ignore_index=0, reduction='none')
            self.crit_mask_lm = None
        else:
            self.crit_mask_lm_smoothed = None
            self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none', ignore_index=0)

    @staticmethod
    def create_mask_and_position_ids(num_tokens, max_len, offset=None):
        base_position_matrix = torch.arange(
            0, max_len, dtype=num_tokens.dtype, device=num_tokens.device).view(1, -1)
        mask = (base_position_matrix < num_tokens.view(-1, 1)).type_as(num_tokens)
        if offset is not None:
            base_position_matrix = base_position_matrix + offset.view(-1, 1)
        position_ids = base_position_matrix * mask
        return mask, position_ids

    @staticmethod
    def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids):
        weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids, -target_span_ids), dim=1)
        from_weight = weight.unsqueeze(-1)
        to_weight = weight.unsqueeze(1)

        true_tokens = (0 <= to_weight) & (torch.cat((source_mask, target_mask, target_mask), dim=1) == 1).unsqueeze(1)
        true_tokens_mask = (from_weight >= 0) & true_tokens & (to_weight <= from_weight)
        pseudo_tokens_mask = (from_weight < 0) & true_tokens & (-to_weight > from_weight)
        pseudo_tokens_mask = pseudo_tokens_mask | ((from_weight < 0) & (to_weight == from_weight))

        return (true_tokens_mask | pseudo_tokens_mask).type_as(source_mask)

    def forward(self, source_idxys, target_idxys, target_index, pseudo_idxys, num_source_tokens, num_target_tokens,
                target_span_ids=None):
        source_len = source_idxys.size(1)
        target_len = target_idxys.size(1)
        pseudo_len = pseudo_idxys.size(1)
        assert target_len == pseudo_len
        assert source_len > 0 and target_len > 0
        split_lengths = (source_len, target_len, pseudo_len)

        if self.config.base_model_type == 'layoutlm':
            source_xys = source_idxys[:, :, 1:]
            target_xys = target_idxys[:, :, 1:]
            pseudo_xys = pseudo_idxys[:, :, 1:]
            input_xys = torch.cat((source_xys, target_xys, pseudo_xys), dim=1)

            source_ids = source_idxys[:, :, 0]
            target_ids = target_idxys[:, :, 0]
            pseudo_ids = pseudo_idxys[:, :, 0]
        else:
            source_ids = source_idxys
            target_ids = target_idxys
            pseudo_ids = pseudo_idxys
            input_xys = None

        input_ids = torch.cat((source_ids, target_ids, pseudo_ids), dim=1)

        token_type_ids = torch.cat(
            (torch.ones_like(source_ids) * self.source_type_id,
             torch.ones_like(target_ids) * self.target_type_id,
             torch.ones_like(pseudo_ids) * self.target_type_id), dim=1)

        source_mask, source_position_ids = \
            self.create_mask_and_position_ids(num_source_tokens, source_len)
        target_mask, target_position_ids = \
            self.create_mask_and_position_ids(num_target_tokens, target_len, offset=num_source_tokens)

        position_ids = torch.cat((source_position_ids, target_position_ids, target_position_ids), dim=1)
        if target_span_ids is None:
            target_span_ids = target_position_ids
        attention_mask = self.create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids)

        if self.config.base_model_type == 'layoutlm':
            outputs = self.bert(
                input_ids, input_xys, attention_mask=attention_mask, token_type_ids=token_type_ids,
                position_ids=position_ids, split_lengths=split_lengths, return_emb=True)
        else:
            outputs = self.bert(
                input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids,
                position_ids=position_ids, split_lengths=split_lengths, return_emb=True)

        sequence_output = outputs[0]
        pseudo_sequence_output = sequence_output[:, source_len + target_len:, ]

        sequence_embedding = outputs[-1]
        source_embedding = sequence_embedding[:, :source_len, :]

        def loss_mask_and_normalize(loss, mask):
            mask = mask.type_as(loss)
            loss = loss * mask
            denominator = torch.sum(mask) + 1e-5
            return (loss / denominator).sum()

        # TODO: do we need to mask the impossible pos with the real input length
        prediction_scores_masked = self.cls(pseudo_sequence_output, source_embedding)

        if self.crit_mask_lm_smoothed:
            masked_lm_loss = self.crit_mask_lm_smoothed(
                F.log_softmax(prediction_scores_masked.float(), dim=-1), target_index)
        else:
            masked_lm_loss = self.crit_mask_lm(
                prediction_scores_masked.transpose(1, 2).float(), target_index)
        pseudo_lm_loss = loss_mask_and_normalize(
            masked_lm_loss.float(), target_mask)

        return pseudo_lm_loss