Tzktz's picture
Upload 7664 files
6fc683c verified
# LayoutLM (Document Foundation Model)
**Multimodal (text + layout/format + image) pre-training for [Document AI](https://www.microsoft.com/en-us/research/project/document-ai/)**
- April, 2021: [LayoutXLM](https://github.com/microsoft/unilm/tree/master/layoutxlm) is coming by extending the LayoutLM into multilingual support! A multilingual form understanding benchmark [XFUND](https://github.com/doc-analysis/XFUND) is also introduced, which includes forms with human labeled key-value pairs in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese).
- December 29th, 2020: [LayoutLMv2](https://arxiv.org/abs/2012.14740) is coming with the new SOTA on a wide varierty of document AI tasks, including [DocVQA](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1) and [SROIE](https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3) leaderboard.
## Introduction
LayoutLM is a simple but effective multi-modal pre-training method of text, layout and image for visually-rich document understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper:
[LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318)
Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers)
[LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740)
Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou, [ACL 2021](#)
[LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836)
Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei, [Preprint](#)
## Release Notes
**\*\*\*\*\* New Sep 27th, 2021: [**LayoutLM-cased**](https://huggingface.co/microsoft/layoutlm-base-cased) are on [HuggingFace](https://github.com/huggingface/transformers) \*\*\*\*\***
**\*\*\*\*\* New Aug 7th, 2020: Our new document understanding datasets, [TableBank](https://doc-analysis.github.io/tablebank-page/) (LREC 2020) and [DocBank](https://doc-analysis.github.io/docbank-page/) (COLING 2020), are now publicly available.\*\*\*\*\***
**\*\*\*\*\* New May 16th, 2020: Our LayoutLM paper has been accepted to KDD 2020 as a full paper in the research track\*\*\*\*\***
**\*\*\*\*\* New Feb 18th, 2020: Initial release of pre-trained models and fine-tuning code for LayoutLM v1 \*\*\*\*\***
## Pre-trained Model
We pre-train LayoutLM on IIT-CDIP Test Collection 1.0\* dataset.
| name | #params | HuggingFace |
| ----------------------- | ------- | ------------------------------------------------------------ |
| LayoutLM-Base, Uncased | 113M | [Model Hub](https://huggingface.co/microsoft/layoutlm-base-uncased) |
| LayoutLM-Base, Cased | 113M | [Model Hub](https://huggingface.co/microsoft/layoutlm-base-cased) |
| LayoutLM-Large, Uncased | 343M | [Model Hub](https://huggingface.co/microsoft/layoutlm-large-uncased) |
\*As some downstream datasets are the subsets of IIT-CDIP, we have carefully excluded the overlap portion from the pre-training data.
### Different Tokenizer
Note that LayoutLM-Base-Cased requires a different tokenizer, based on RobertaTokenizer. You can
initialize it as follows:
~~~
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('microsoft/layoutlm-base-cased')
~~~
## Fine-tuning Example on FUNSD
### Installation
Please refer to [layoutlmft](../layoutlmft/README.md)
### Command
```
cd layoutlmft
python -m torch.distributed.launch --nproc_per_node=4 examples/run_funsd.py \
--model_name_or_path microsoft/layoutlm-base-uncased \
--output_dir /tmp/test-ner \
--do_train \
--do_predict \
--max_steps 1000 \
--warmup_ratio 0.1 \
--fp16
```
### Results
#### SROIE (field-level)
| Model | Hmean |
| -------------------------------------------------------------------------------------------- | ---------- |
| BERT-Large | 90.99% |
| RoBERTa-Large | 92.80% |
| [Ranking 1st in SROIE](https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3) | 94.02% |
| [**LayoutLM**](https://rrc.cvc.uab.es/?ch=13&com=evaluation&view=method_info&task=3&m=71448) | **96.04%** |
#### RVL-CDIP
| Model | Accuracy |
| ------------------------------------------------------------------------------------ | ---------- |
| BERT-Large | 89.92% |
| RoBERTa-Large | 90.11% |
| [VGG-16 (Afzal et al., 2017)](https://arxiv.org/abs/1704.03557) | 90.97% |
| [Stacked CNN Ensemble (Das et al., 2018)](https://arxiv.org/abs/1801.09321) | 92.21% |
| [LadderNet (Sarkhel & Nandi, 2019)](https://www.ijcai.org/Proceedings/2019/0466.pdf) | 92.77% |
| [Multimodal Ensemble (Dauphinee et al., 2019)](https://arxiv.org/abs/1912.04376) | 93.07% |
| **LayoutLM** | **94.42%** |
#### FUNSD (field-level)
| Model | Precision | Recall | F1 |
| ------------- | ---------- | ---------- | ---------- |
| BERT-Large | 0.6113 | 0.7085 | 0.6563 |
| RoBERTa-Large | 0.6780 | 0.7391 | 0.7072 |
| **LayoutLM** | **0.7677** | **0.8195** | **0.7927** |
## Citation
If you find LayoutLM useful in your research, please cite the following paper:
``` latex
@inproceedings{Xu2020LayoutLMPO,
title = {LayoutLM: Pre-training of Text and Layout for Document Image Understanding},
author = {Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou},
journal = {Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
year = {2020}
}
```
## License
This project is licensed under the license found in the LICENSE file in the root directory of this source tree.
Portions of the source code are based on the [transformers](https://github.com/huggingface/transformers) project.
[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
### Contact Information
For help or issues using LayoutLM, please submit a GitHub issue.
For other communications related to LayoutLM, please contact Lei Cui (`[email protected]`), Furu Wei (`[email protected]`).