Tzktz's picture
Upload 7664 files
6fc683c verified
import os
import sys
import time
import torch
import logging
import argparse
import copy
from tqdm import tqdm
from torch import Tensor
from omegaconf import open_dict
from typing import Dict, Optional
from fairseq import utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("inference")
def write_result(results, output_file):
with open(output_file, 'w') as f:
for line in results:
f.write(line + '\n')
@torch.no_grad()
def forward_decoder(model, input_tokens, encoder_out, temperature=1.0, incremental_state=None,
parallel_forward_start_pos=None, use_log_softmax=False):
decoder_out = model.decoder.forward(input_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
parallel_forward_start_pos=parallel_forward_start_pos)
decoder_out_tuple = (decoder_out[0].div_(temperature), decoder_out[1])
if use_log_softmax:
probs = model.get_normalized_probs(decoder_out_tuple, log_probs=True, sample=None)
else:
probs = decoder_out_tuple[0]
pred_tokens = torch.argmax(probs, dim=-1).squeeze(0)
return pred_tokens
@torch.no_grad()
def fairseq_generate(data_lines, args, models, task, batch_size, beam_size, device):
"""beam search | greedy decoding implemented by fairseq"""
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
gen_args = copy.copy(args)
with open_dict(gen_args):
gen_args.beam = beam_size
generator = task.build_generator(models, gen_args)
data_size = len(data_lines)
all_results = []
logger.info(f'Fairseq generate batch {batch_size}, beam {beam_size}')
start = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_lines = [line for line in data_lines[start_idx: min(start_idx + batch_size, data_size)]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = True
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
translations = generator.generate(models, batch, prefix_tokens=None)
results = []
for id, hypos in zip(batch["id"].tolist(), translations):
results.append((id, hypos))
batched_hypos = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
all_results.extend([tgt_dict.string(hypos[0]['tokens']) for hypos in batched_hypos])
delta = time.perf_counter() - start
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
@torch.no_grad()
def baseline_generate(data_lines, model, task, batch_size, device, no_use_logsoft=True, max_len=200):
"""batch Implementation"""
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
start = time.perf_counter()
logger.info(f'Baseline generate')
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_size = min(data_size - start_idx, batch_size)
batch_lines = [line for line in data_lines[start_idx: start_idx + batch_size]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = True
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
net_input = batch['net_input']
encoder_out = model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
batch_tokens = [[tgt_dict.eos()] for _ in range(batch_size)]
finish_list = []
for step in range(0, max_len):
cur_input_tokens = torch.tensor(batch_tokens).to(device).long()
pred_tokens = forward_decoder(model,
cur_input_tokens,
encoder_out,
incremental_state,
use_log_softmax=not no_use_logsoft,
)
for i, pred_tok in enumerate(pred_tokens):
if len(batch_tokens[i]) == 1:
batch_tokens[i].append(pred_tok.item())
else:
if batch_tokens[i][-1] != tgt_dict.eos():
batch_tokens[i].append(pred_tok.item())
else:
if i not in finish_list:
finish_list.append(i)
batch_tokens[i].append(tgt_dict.eos())
if len(finish_list) == batch_size:
break
batch_tokens = [y for x, y in sorted(zip(batch['id'].cpu().tolist(), batch_tokens))]
for tokens in batch_tokens:
all_results.append(tgt_dict.string(tokens[1:]))
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
delta = time.perf_counter() - start
return remove_bpe_results, delta
def construct_hash_sets(batch_sents, min_gram=1, max_gram=3):
"""batch Implementation"""
batch_hash_dicts = []
for sent in batch_sents:
hash_dict = {}
for i in range(0, len(sent) - min_gram + 1):
for j in range(min_gram, max_gram + 1):
if i + j <= len(sent):
ngram = tuple(sent[i: i + j])
if ngram not in hash_dict:
hash_dict[ngram] = []
hash_dict[ngram].append(i + j)
batch_hash_dicts.append(hash_dict)
return batch_hash_dicts
def find_hash_sets(hash_set, tokens, min_gram=1, max_gram=3):
for i in range(min_gram, max_gram + 1):
if len(tokens) < i:
return -1
ngram = tuple(tokens[-i:])
if ngram not in hash_set:
return -1
if len(hash_set[ngram]) == 1:
return hash_set[ngram][0]
return -1
def cut_incremental_state(incremental_state, keep_len, encoder_state_ids):
for n in incremental_state:
if n[: n.index('.')] in encoder_state_ids:
continue
for k in incremental_state[n]:
if incremental_state[n][k] is not None:
if incremental_state[n][k].dim() == 4:
incremental_state[n][k] = incremental_state[n][k][:, :, :keep_len]
elif incremental_state[n][k].dim() == 2:
incremental_state[n][k] = incremental_state[n][k][:, :keep_len]
@torch.no_grad()
def aggressive_generate(data_lines, model, task, batch_size, device, max_len=200):
"""batch Implementation"""
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
start_time = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_results = [[tgt_dict.eos()] for _ in range(batch_size)]
batch_size = min(data_size - start_idx, batch_size)
batch_lines = [line for line in data_lines[start_idx: start_idx + batch_size]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = False
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
net_input = batch['net_input']
encoder_out = model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
src_tokens = net_input['src_tokens'].tolist()
batch_tokens = [[tgt_dict.eos()] for _ in range(batch_size)]
line_id = batch['id'].cpu().tolist()
# remove padding, for hash construct
batch_src_lines = [batch_ids[line_id[i]].cpu().tolist() for i in range(0, batch_size)]
src_hash_lists = construct_hash_sets(batch_src_lines)
finish_list = []
at_list = []
# pred token position
start_list = [0] * batch_size
# src token position
src_pos_list = [0] * batch_size
for step in range(0, max_len):
# Aggressive Decoding at the first step
if step == 0:
cur_span_input_tokens = torch.tensor([[tgt_dict.eos()] + t for t in src_tokens]).to(device).long()
else:
# padding, 2 * max_len for boundary conditions
pad_tokens = [([tgt_dict.eos()] + [tgt_dict.pad()] * max_len * 2) for _ in range(batch_size)]
for i in range(batch_size):
index = max_len if max_len < len(batch_tokens[i]) else len(batch_tokens[i])
pad_tokens[i][:index] = batch_tokens[i][:index]
cur_span_input_tokens = torch.tensor(pad_tokens).to(device)
cur_span_input_tokens = cur_span_input_tokens[:, : cur_span_input_tokens.ne(tgt_dict.pad()).sum(1).max()]
input_tokens_add = [t[1:] + [-1] for t in cur_span_input_tokens.cpu().tolist()]
pred_tensor = forward_decoder(model, cur_span_input_tokens, encoder_out)
pred_tokens = pred_tensor.cpu().tolist()
if batch_size == 1:
pred_tokens = [pred_tokens]
for i, (input_token_add, pred_token) in enumerate(zip(input_tokens_add, pred_tokens)):
if i not in finish_list:
# wrong pos is based on the src sent
wrong_pos = len(batch_src_lines[i][src_pos_list[i]:])
for j, (inp, pred) in enumerate(zip(input_token_add[start_list[i]:], pred_token[start_list[i]:])):
if inp != pred:
wrong_pos = j
break
if step == 0:
src_pos_list[i] += wrong_pos
batch_tokens[i].extend(pred_token[start_list[i]: start_list[i] + wrong_pos])
if (batch_tokens[i][-1] == tgt_dict.eos() and len(batch_tokens[i]) != 1
and wrong_pos >= len(batch_src_lines[i][src_pos_list[i]:])) or start_list[i] > max_len:
finish_list.append(i)
if len(batch_tokens[i]) > max_len + 1:
batch_tokens[i] = batch_tokens[i][:max_len + 1]
batch_results[i] = batch_tokens[i]
else:
if i not in at_list:
# greedy decoding
batch_tokens[i] = batch_tokens[i][: start_list[i] + wrong_pos + 1]
batch_tokens[i].append(pred_token[start_list[i] + wrong_pos])
start_list[i] = start_list[i] + wrong_pos + 1
at_list.append(i)
else:
batch_tokens[i].append(pred_token[start_list[i]])
start_list[i] += 1
find_end_idx = find_hash_sets(src_hash_lists[i], batch_tokens[i])
if find_end_idx != -1:
start_list[i] = len(batch_tokens[i]) - 1
src_pos_list[i] = find_end_idx
batch_tokens[i] = batch_tokens[i] + batch_src_lines[i][src_pos_list[i]:]
at_list.remove(i)
if len(finish_list) == batch_size:
break
batch_results = [y for x, y in sorted(zip(line_id, batch_results))]
for tokens in batch_results:
all_results.append(tgt_dict.string(tokens[1:]))
delta = time.perf_counter() - start_time
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', type=str, default=None,
help='path to model file, e.g., /to/path/checkpoint_best.pt')
parser.add_argument('--bin-data', type=str, default=None,
help='directory containing src and tgt dictionaries')
parser.add_argument('--input-path', type=str, default=None,
help='path to eval file, e.g., /to/path/conll14.bpe.txt')
parser.add_argument('--output-path', type=str, default=None,
help='path to output file, e.g., /to/path/conll14.pred.txt')
parser.add_argument('--batch', type=int, default=10,
help='batch size')
parser.add_argument('--beam', type=int, default=1,
help='beam size')
parser.add_argument('--fairseq', action='store_true', default=False,
help='fairseq decoding')
parser.add_argument('--baseline', action='store_true', default=False,
help='greedy/batch decoding')
parser.add_argument('--aggressive', action='store_true', default=False,
help='aggressive decoding')
parser.add_argument('--block', type=int, default=None)
parser.add_argument('--match', type=int, default=1)
parser.add_argument('--cpu', action='store_true', default=False)
parser.add_argument('--fp16', action='store_true', default=False)
cmd_args = parser.parse_args()
cmd_args.checkpoint_path = os.path.expanduser(cmd_args.checkpoint_path)
cmd_args.bin_data = os.path.expanduser(cmd_args.bin_data)
cmd_args.input_path = os.path.expanduser(cmd_args.input_path)
cmd_args.output_path = os.path.expanduser(cmd_args.output_path)
models, args, task = load_model_ensemble_and_task(filenames=[cmd_args.checkpoint_path],
arg_overrides={'data': cmd_args.bin_data})
device = torch.device('cuda')
model = models[0].to(device).eval()
if cmd_args.fp16:
logging.info("fp16 enabled!")
model.half()
with open(cmd_args.input_path, 'r') as f:
bpe_sents = [l.strip() for l in f.readlines()]
remove_bpe_results = None
if cmd_args.fairseq:
remove_bpe_results, delta = fairseq_generate(bpe_sents, args, models, task, cmd_args.batch, cmd_args.beam,
device)
logger.info(f'Fairseq generate batch {cmd_args.batch}, beam {cmd_args.beam}: {delta}')
elif cmd_args.baseline:
remove_bpe_results, delta = baseline_generate(bpe_sents, model, task, cmd_args.batch, device)
logger.info(f'Baseline generate: {delta}')
elif cmd_args.aggressive:
remove_bpe_results, delta = aggressive_generate(bpe_sents, model, task, cmd_args.batch, device)
logger.info(f'Aggressive generate: {delta}')
if cmd_args.output_path is not None:
write_result(remove_bpe_results, cmd_args.output_path)