Spaces:
Sleeping
Sleeping
File size: 15,852 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import sys
import time
import torch
import logging
import argparse
import copy
from tqdm import tqdm
from torch import Tensor
from omegaconf import open_dict
from typing import Dict, Optional
from fairseq import utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("inference")
def write_result(results, output_file):
with open(output_file, 'w') as f:
for line in results:
f.write(line + '\n')
@torch.no_grad()
def forward_decoder(model, input_tokens, encoder_out, temperature=1.0, incremental_state=None,
parallel_forward_start_pos=None, use_log_softmax=False):
decoder_out = model.decoder.forward(input_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
parallel_forward_start_pos=parallel_forward_start_pos)
decoder_out_tuple = (decoder_out[0].div_(temperature), decoder_out[1])
if use_log_softmax:
probs = model.get_normalized_probs(decoder_out_tuple, log_probs=True, sample=None)
else:
probs = decoder_out_tuple[0]
pred_tokens = torch.argmax(probs, dim=-1).squeeze(0)
return pred_tokens
@torch.no_grad()
def fairseq_generate(data_lines, args, models, task, batch_size, beam_size, device):
"""beam search | greedy decoding implemented by fairseq"""
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
gen_args = copy.copy(args)
with open_dict(gen_args):
gen_args.beam = beam_size
generator = task.build_generator(models, gen_args)
data_size = len(data_lines)
all_results = []
logger.info(f'Fairseq generate batch {batch_size}, beam {beam_size}')
start = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_lines = [line for line in data_lines[start_idx: min(start_idx + batch_size, data_size)]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = True
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
translations = generator.generate(models, batch, prefix_tokens=None)
results = []
for id, hypos in zip(batch["id"].tolist(), translations):
results.append((id, hypos))
batched_hypos = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
all_results.extend([tgt_dict.string(hypos[0]['tokens']) for hypos in batched_hypos])
delta = time.perf_counter() - start
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
@torch.no_grad()
def baseline_generate(data_lines, model, task, batch_size, device, no_use_logsoft=True, max_len=200):
"""batch Implementation"""
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
start = time.perf_counter()
logger.info(f'Baseline generate')
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_size = min(data_size - start_idx, batch_size)
batch_lines = [line for line in data_lines[start_idx: start_idx + batch_size]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = True
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
net_input = batch['net_input']
encoder_out = model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
batch_tokens = [[tgt_dict.eos()] for _ in range(batch_size)]
finish_list = []
for step in range(0, max_len):
cur_input_tokens = torch.tensor(batch_tokens).to(device).long()
pred_tokens = forward_decoder(model,
cur_input_tokens,
encoder_out,
incremental_state,
use_log_softmax=not no_use_logsoft,
)
for i, pred_tok in enumerate(pred_tokens):
if len(batch_tokens[i]) == 1:
batch_tokens[i].append(pred_tok.item())
else:
if batch_tokens[i][-1] != tgt_dict.eos():
batch_tokens[i].append(pred_tok.item())
else:
if i not in finish_list:
finish_list.append(i)
batch_tokens[i].append(tgt_dict.eos())
if len(finish_list) == batch_size:
break
batch_tokens = [y for x, y in sorted(zip(batch['id'].cpu().tolist(), batch_tokens))]
for tokens in batch_tokens:
all_results.append(tgt_dict.string(tokens[1:]))
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
delta = time.perf_counter() - start
return remove_bpe_results, delta
def construct_hash_sets(batch_sents, min_gram=1, max_gram=3):
"""batch Implementation"""
batch_hash_dicts = []
for sent in batch_sents:
hash_dict = {}
for i in range(0, len(sent) - min_gram + 1):
for j in range(min_gram, max_gram + 1):
if i + j <= len(sent):
ngram = tuple(sent[i: i + j])
if ngram not in hash_dict:
hash_dict[ngram] = []
hash_dict[ngram].append(i + j)
batch_hash_dicts.append(hash_dict)
return batch_hash_dicts
def find_hash_sets(hash_set, tokens, min_gram=1, max_gram=3):
for i in range(min_gram, max_gram + 1):
if len(tokens) < i:
return -1
ngram = tuple(tokens[-i:])
if ngram not in hash_set:
return -1
if len(hash_set[ngram]) == 1:
return hash_set[ngram][0]
return -1
def cut_incremental_state(incremental_state, keep_len, encoder_state_ids):
for n in incremental_state:
if n[: n.index('.')] in encoder_state_ids:
continue
for k in incremental_state[n]:
if incremental_state[n][k] is not None:
if incremental_state[n][k].dim() == 4:
incremental_state[n][k] = incremental_state[n][k][:, :, :keep_len]
elif incremental_state[n][k].dim() == 2:
incremental_state[n][k] = incremental_state[n][k][:, :keep_len]
@torch.no_grad()
def aggressive_generate(data_lines, model, task, batch_size, device, max_len=200):
"""batch Implementation"""
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
start_time = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_results = [[tgt_dict.eos()] for _ in range(batch_size)]
batch_size = min(data_size - start_idx, batch_size)
batch_lines = [line for line in data_lines[start_idx: start_idx + batch_size]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = False
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
net_input = batch['net_input']
encoder_out = model.encoder.forward(net_input['src_tokens'], net_input['src_lengths'])
src_tokens = net_input['src_tokens'].tolist()
batch_tokens = [[tgt_dict.eos()] for _ in range(batch_size)]
line_id = batch['id'].cpu().tolist()
# remove padding, for hash construct
batch_src_lines = [batch_ids[line_id[i]].cpu().tolist() for i in range(0, batch_size)]
src_hash_lists = construct_hash_sets(batch_src_lines)
finish_list = []
at_list = []
# pred token position
start_list = [0] * batch_size
# src token position
src_pos_list = [0] * batch_size
for step in range(0, max_len):
# Aggressive Decoding at the first step
if step == 0:
cur_span_input_tokens = torch.tensor([[tgt_dict.eos()] + t for t in src_tokens]).to(device).long()
else:
# padding, 2 * max_len for boundary conditions
pad_tokens = [([tgt_dict.eos()] + [tgt_dict.pad()] * max_len * 2) for _ in range(batch_size)]
for i in range(batch_size):
index = max_len if max_len < len(batch_tokens[i]) else len(batch_tokens[i])
pad_tokens[i][:index] = batch_tokens[i][:index]
cur_span_input_tokens = torch.tensor(pad_tokens).to(device)
cur_span_input_tokens = cur_span_input_tokens[:, : cur_span_input_tokens.ne(tgt_dict.pad()).sum(1).max()]
input_tokens_add = [t[1:] + [-1] for t in cur_span_input_tokens.cpu().tolist()]
pred_tensor = forward_decoder(model, cur_span_input_tokens, encoder_out)
pred_tokens = pred_tensor.cpu().tolist()
if batch_size == 1:
pred_tokens = [pred_tokens]
for i, (input_token_add, pred_token) in enumerate(zip(input_tokens_add, pred_tokens)):
if i not in finish_list:
# wrong pos is based on the src sent
wrong_pos = len(batch_src_lines[i][src_pos_list[i]:])
for j, (inp, pred) in enumerate(zip(input_token_add[start_list[i]:], pred_token[start_list[i]:])):
if inp != pred:
wrong_pos = j
break
if step == 0:
src_pos_list[i] += wrong_pos
batch_tokens[i].extend(pred_token[start_list[i]: start_list[i] + wrong_pos])
if (batch_tokens[i][-1] == tgt_dict.eos() and len(batch_tokens[i]) != 1
and wrong_pos >= len(batch_src_lines[i][src_pos_list[i]:])) or start_list[i] > max_len:
finish_list.append(i)
if len(batch_tokens[i]) > max_len + 1:
batch_tokens[i] = batch_tokens[i][:max_len + 1]
batch_results[i] = batch_tokens[i]
else:
if i not in at_list:
# greedy decoding
batch_tokens[i] = batch_tokens[i][: start_list[i] + wrong_pos + 1]
batch_tokens[i].append(pred_token[start_list[i] + wrong_pos])
start_list[i] = start_list[i] + wrong_pos + 1
at_list.append(i)
else:
batch_tokens[i].append(pred_token[start_list[i]])
start_list[i] += 1
find_end_idx = find_hash_sets(src_hash_lists[i], batch_tokens[i])
if find_end_idx != -1:
start_list[i] = len(batch_tokens[i]) - 1
src_pos_list[i] = find_end_idx
batch_tokens[i] = batch_tokens[i] + batch_src_lines[i][src_pos_list[i]:]
at_list.remove(i)
if len(finish_list) == batch_size:
break
batch_results = [y for x, y in sorted(zip(line_id, batch_results))]
for tokens in batch_results:
all_results.append(tgt_dict.string(tokens[1:]))
delta = time.perf_counter() - start_time
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', type=str, default=None,
help='path to model file, e.g., /to/path/checkpoint_best.pt')
parser.add_argument('--bin-data', type=str, default=None,
help='directory containing src and tgt dictionaries')
parser.add_argument('--input-path', type=str, default=None,
help='path to eval file, e.g., /to/path/conll14.bpe.txt')
parser.add_argument('--output-path', type=str, default=None,
help='path to output file, e.g., /to/path/conll14.pred.txt')
parser.add_argument('--batch', type=int, default=10,
help='batch size')
parser.add_argument('--beam', type=int, default=1,
help='beam size')
parser.add_argument('--fairseq', action='store_true', default=False,
help='fairseq decoding')
parser.add_argument('--baseline', action='store_true', default=False,
help='greedy/batch decoding')
parser.add_argument('--aggressive', action='store_true', default=False,
help='aggressive decoding')
parser.add_argument('--block', type=int, default=None)
parser.add_argument('--match', type=int, default=1)
parser.add_argument('--cpu', action='store_true', default=False)
parser.add_argument('--fp16', action='store_true', default=False)
cmd_args = parser.parse_args()
cmd_args.checkpoint_path = os.path.expanduser(cmd_args.checkpoint_path)
cmd_args.bin_data = os.path.expanduser(cmd_args.bin_data)
cmd_args.input_path = os.path.expanduser(cmd_args.input_path)
cmd_args.output_path = os.path.expanduser(cmd_args.output_path)
models, args, task = load_model_ensemble_and_task(filenames=[cmd_args.checkpoint_path],
arg_overrides={'data': cmd_args.bin_data})
device = torch.device('cuda')
model = models[0].to(device).eval()
if cmd_args.fp16:
logging.info("fp16 enabled!")
model.half()
with open(cmd_args.input_path, 'r') as f:
bpe_sents = [l.strip() for l in f.readlines()]
remove_bpe_results = None
if cmd_args.fairseq:
remove_bpe_results, delta = fairseq_generate(bpe_sents, args, models, task, cmd_args.batch, cmd_args.beam,
device)
logger.info(f'Fairseq generate batch {cmd_args.batch}, beam {cmd_args.beam}: {delta}')
elif cmd_args.baseline:
remove_bpe_results, delta = baseline_generate(bpe_sents, model, task, cmd_args.batch, device)
logger.info(f'Baseline generate: {delta}')
elif cmd_args.aggressive:
remove_bpe_results, delta = aggressive_generate(bpe_sents, model, task, cmd_args.batch, device)
logger.info(f'Aggressive generate: {delta}')
if cmd_args.output_path is not None:
write_result(remove_bpe_results, cmd_args.output_path)
|