Tzktz's picture
Upload 7664 files
6fc683c verified
import logging, os, sys
import time
import torch
from torch import Tensor
from typing import Dict, List, Optional
import copy
from tqdm import tqdm
from omegaconf import open_dict
import fairseq
from fairseq.checkpoint_utils import load_model_ensemble_and_task
from fairseq import utils
from fairseq.data import data_utils
import argparse
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("inference")
def write_result(results, output_file):
with open(output_file, 'w') as f:
for line in results:
f.write(line + '\n')
@torch.no_grad()
def fairseq_generate(data_lines, args, models, task, batch_size, beam_size, device):
# beam search | greedy decoding implemented by fairseq
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
gen_args = copy.copy(args)
with open_dict(gen_args):
gen_args.beam = beam_size
generator = task.build_generator(models, gen_args)
data_size = len(data_lines)
all_results = []
logger.info(f'Fairseq generate batch {batch_size}, beam {beam_size}')
start = time.perf_counter()
for start_idx in tqdm(range(0, data_size, batch_size)):
batch_lines = [line for line in data_lines[start_idx: min(start_idx + batch_size, data_size)]]
batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
lengths = torch.LongTensor([t.numel() for t in batch_ids])
batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
batch_dataset.left_pad_source = True
batch = batch_dataset.collater(batch_dataset)
batch = utils.apply_to_sample(lambda t: t.to(device), batch)
translations = generator.generate(models, batch, prefix_tokens=None)
results = []
for id, hypos in zip(batch["id"].tolist(), translations):
results.append((id, hypos))
batched_hypos = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
all_results.extend([tgt_dict.string(hypos[0]['tokens']) for hypos in batched_hypos])
delta = time.perf_counter() - start
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
@torch.no_grad()
def forward_decoder(model,
input_tokens,
encoder_out,
incremental_state,
parallel_forward_start_pos=None,
temperature=1.0,
use_log_softmax=True):
decoder_out = model.decoder.forward(input_tokens,
encoder_out=encoder_out,
incremental_state=incremental_state,
parallel_forward_start_pos=parallel_forward_start_pos)
decoder_out_tuple = (decoder_out[0].div_(temperature), decoder_out[1])
if use_log_softmax:
# 1, len, vocab
probs = model.get_normalized_probs(decoder_out_tuple, log_probs=True, sample=None)
else:
probs = decoder_out_tuple[0]
# len
pred_tokens = torch.argmax(probs, dim=-1).squeeze(0)
return pred_tokens
@torch.no_grad()
def baseline_generate(data_lines, model, task, device, no_use_logsoft=False, max_len=200):
# simplified greedy decoding
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
data_size = len(data_lines)
all_results = []
start = time.perf_counter()
logger.info(f'Baseline generate')
for start_idx in tqdm(range(0, data_size)):
bpe_line = data_lines[start_idx]
src_tokens = src_dict.encode_line(bpe_line, add_if_not_exist=False).long()
net_input = {'src_tokens': src_tokens.unsqueeze(0).to(device),
'src_lengths': torch.LongTensor([src_tokens.numel()]).to(device)}
encoder_out = model.encoder.forward_torchscript(net_input)
incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
tokens = [tgt_dict.eos()]
for step in range(0, max_len):
cur_input_tokens = torch.tensor([tokens]).to(device).long()
# scalar
pred_token = forward_decoder(model,
cur_input_tokens,
encoder_out,
incremental_state,
use_log_softmax=not no_use_logsoft).item()
if pred_token == tgt_dict.eos():
break
else:
tokens.append(pred_token)
all_results.append(tgt_dict.string(tokens[1:]))
delta = time.perf_counter() - start
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
def construct_hash_sets(sent, min_gram=1, max_gram=3):
hash_dict = {}
for i in range(0, len(sent) - min_gram + 1):
for j in range(min_gram, max_gram+1):
if i + j <= len(sent):
ngram = tuple(sent[i: i+j])
if ngram not in hash_dict:
hash_dict[ngram] = []
hash_dict[ngram].append(i+j)
return hash_dict
def find_hash_sets(hash_set, tokens, min_gram=1, max_gram=3):
for i in range(min_gram, max_gram+1):
if len(tokens) < i:
return -1
ngram = tuple(tokens[-i:])
if ngram not in hash_set:
return -1
if len(hash_set[ngram]) == 1:
return hash_set[ngram][0]
return -1
def cut_incremental_state(incremental_state, keep_len, encoder_state_ids):
for n in incremental_state:
if n[: n.index('.')] in encoder_state_ids:
continue
for k in incremental_state[n]:
if incremental_state[n][k] is not None:
if incremental_state[n][k].dim() == 4:
incremental_state[n][k] = incremental_state[n][k][:, :, :keep_len]
elif incremental_state[n][k].dim() == 2:
incremental_state[n][k] = incremental_state[n][k][:, :keep_len]
@torch.no_grad()
def aggressive_generate(data_lines, model, task, device, no_use_logsoft=False, max_len=200):
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
encoder_state_ids = []
for i in range(len(model.decoder.layers)):
encoder_state_ids.append(model.decoder.layers[i].encoder_attn._incremental_state_id)
data_size = len(data_lines)
all_results = []
start_time = time.perf_counter()
for start_idx in tqdm(range(0, data_size)):
bpe_line = data_lines[start_idx]
src_tokens = src_dict.encode_line(bpe_line, add_if_not_exist=False).long()
net_input = {'src_tokens': src_tokens.unsqueeze(0).to(device),
'src_lengths': torch.LongTensor([src_tokens.numel()]).to(device)}
encoder_out = model.encoder.forward_torchscript(net_input)
incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
src_tokens_remove_eos_list = src_tokens[:-1].tolist()
src_hash = construct_hash_sets(src_tokens_remove_eos_list)
start = 0
tokens = [tgt_dict.eos()]
while start < len(src_tokens_remove_eos_list) and len(tokens) < max_len + 1:
cur_span_input_tokens = torch.tensor([tokens + src_tokens_remove_eos_list[start:]]).to(device).long()
pred_tokens = forward_decoder(model,
cur_span_input_tokens,
encoder_out,
incremental_state,
parallel_forward_start_pos=len(tokens) - 1,
use_log_softmax=not no_use_logsoft)
pred_judge = pred_tokens.cpu() == src_tokens[start:]
if all(pred_judge):
tokens += src_tokens[start:].tolist()
break
else:
wrong_pos = pred_judge.tolist().index(False)
start += wrong_pos
tokens.extend(pred_tokens.cpu().tolist()[: wrong_pos + 1])
cut_incremental_state(incremental_state, keep_len=len(tokens) - 1, encoder_state_ids=encoder_state_ids)
cur_len = len(tokens)
for step in range(cur_len, max_len + 1):
cur_input_tokens = torch.tensor([tokens]).to(device).long()
pred_token = forward_decoder(model,
cur_input_tokens,
encoder_out,
incremental_state,
use_log_softmax=not no_use_logsoft).item()
if pred_token == tgt_dict.eos():
start = len(src_tokens_remove_eos_list)
break
else:
tokens.append(pred_token)
find_end_idx = find_hash_sets(src_hash, tokens)
if find_end_idx != -1:
start = find_end_idx
if start < len(src_tokens_remove_eos_list):
break
if len(tokens) > max_len + 1:
tokens = tokens[:max_len + 1]
all_results.append(tgt_dict.string(tokens[1:]))
delta = time.perf_counter() - start_time
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
@torch.no_grad()
def paper_aggressive_generate(data_lines, model, task, device, no_use_logsoft=False, max_len=200):
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
encoder_state_ids = []
for i in range(len(model.decoder.layers)):
encoder_state_ids.append(model.decoder.layers[i].encoder_attn._incremental_state_id)
data_size = len(data_lines)
all_results = []
start_time = time.perf_counter()
for start_idx in tqdm(range(0, data_size)):
bpe_line = data_lines[start_idx]
src_tokens = src_dict.encode_line(bpe_line, add_if_not_exist=False).long()
net_input = {'src_tokens': src_tokens.unsqueeze(0).to(device),
'src_lengths': torch.LongTensor([src_tokens.numel()]).to(device)}
encoder_out = model.encoder.forward_torchscript(net_input)
incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
src_tokens_remove_eos_list = src_tokens[:-1].tolist()
src_hash = construct_hash_sets(src_tokens_remove_eos_list)
src_tokens_add_pad_list = torch.tensor(src_tokens_remove_eos_list + [-1]) # [..., -1]
tokens = [tgt_dict.eos()]
while (len(tokens) == 1 or tokens[-1] != tgt_dict.eos()) and len(tokens) < max_len + 1:
if len(tokens) == 1:
find_end_idx = 0
else:
find_end_idx = find_hash_sets(src_hash, tokens)
if find_end_idx != -1 and find_end_idx < len(src_tokens_remove_eos_list):
cur_span_input_tokens = torch.tensor([tokens + src_tokens_remove_eos_list[find_end_idx:]]).to(device).long()
pred_tokens = forward_decoder(model,
cur_span_input_tokens,
encoder_out,
incremental_state,
parallel_forward_start_pos=len(tokens) - 1,
use_log_softmax=not no_use_logsoft)
pred_judge = pred_tokens.cpu() == src_tokens_add_pad_list[find_end_idx:]
wrong_pos = pred_judge.tolist().index(False)
tokens.extend(pred_tokens.cpu().tolist()[: wrong_pos + 1])
cut_incremental_state(incremental_state, keep_len=len(tokens) - 1, encoder_state_ids=encoder_state_ids)
else:
cur_input_tokens = torch.tensor([tokens]).to(device).long()
pred_token = forward_decoder(model,
cur_input_tokens,
encoder_out,
incremental_state,
use_log_softmax=not no_use_logsoft).item()
tokens.append(pred_token)
if len(tokens) > max_len + 1:
tokens = tokens[:max_len + 1]
if tokens[-1] == tgt_dict.eos():
tokens = tokens[:-1]
all_results.append(tgt_dict.string(tokens[1:]))
delta = time.perf_counter() - start_time
remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
return remove_bpe_results, delta
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', type=str, required=True,
help='path to model file, e.g., /to/path/checkpoint_best.pt')
parser.add_argument('--bin-data', type=str, required=True,
help='directory containing src and tgt dictionaries')
parser.add_argument('--input-path', type=str, required=True,
help='path to eval file, e.g., /to/path/conll14.bpe.txt')
parser.add_argument('--output-path', type=str, default=None,
help='path to output file, e.g., /to/path/conll14.pred.txt')
parser.add_argument('--batch', type=int, default=None,
help='batch size')
parser.add_argument('--beam', type=int, default=5,
help='beam size')
parser.add_argument('--baseline', action='store_true', default=False,
help='greedy/one-by-one decoding')
parser.add_argument('--aggressive', action='store_true', default=False,
help='aggressive decoding')
parser.add_argument('--no_use_logsoft', action='store_true', default=False,
help='not use log_softmax when aggressive decoding')
parser.add_argument('--block', type=int, default=None)
parser.add_argument('--match', type=int, default=1)
parser.add_argument('--cpu', action='store_true', default=False)
cmd_args = parser.parse_args()
cmd_args.checkpoint_path = os.path.expanduser(cmd_args.checkpoint_path)
cmd_args.bin_data = os.path.expanduser(cmd_args.bin_data)
cmd_args.input_path = os.path.expanduser(cmd_args.input_path)
cmd_args.output_path = os.path.expanduser(cmd_args.output_path)
models, args, task = load_model_ensemble_and_task(filenames=[cmd_args.checkpoint_path],
arg_overrides={'data': cmd_args.bin_data})
if cmd_args.cpu:
device = torch.device('cpu')
else:
device = torch.device('cuda')
model = models[0].to(device).eval()
with open(cmd_args.input_path, 'r') as f:
bpe_sents = [l.strip() for l in f.readlines()]
if cmd_args.batch is not None:
remove_bpe_results, delta = fairseq_generate(bpe_sents, args, models, task, cmd_args.batch, cmd_args.beam, device)
logger.info(f'Fairseq generate batch {cmd_args.batch}, beam {cmd_args.beam}: {delta}')
elif cmd_args.baseline:
remove_bpe_results, delta = baseline_generate(bpe_sents, model, task, device, no_use_logsoft=cmd_args.no_use_logsoft)
logger.info(f'Baseline generate: {delta}')
elif cmd_args.aggressive:
remove_bpe_results, delta = paper_aggressive_generate(bpe_sents, model, task, device, no_use_logsoft=cmd_args.no_use_logsoft)
# remove_bpe_results, delta = aggressive_generate(bpe_sents, model, task, device, no_use_logsoft=cmd_args.no_use_logsoft)
logger.info(f'Aggressive generate: {delta}')
if cmd_args.output_path is not None:
write_result(remove_bpe_results, cmd_args.output_path)