File size: 16,435 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import logging, os, sys
import time
import torch
from torch import Tensor
from typing import Dict, List, Optional
import copy
from tqdm import tqdm
from omegaconf import open_dict
import fairseq
from fairseq.checkpoint_utils import load_model_ensemble_and_task
from fairseq import utils
from fairseq.data import data_utils
import argparse

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s |  [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("inference")

def write_result(results, output_file):
    with open(output_file, 'w') as f:
        for line in results:
            f.write(line + '\n')

@torch.no_grad()
def fairseq_generate(data_lines, args, models, task, batch_size, beam_size, device):
    # beam search | greedy decoding implemented by fairseq
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary

    gen_args = copy.copy(args)
    with open_dict(gen_args):
        gen_args.beam = beam_size
    generator = task.build_generator(models, gen_args)
    data_size = len(data_lines)

    all_results = []
    logger.info(f'Fairseq generate batch {batch_size}, beam {beam_size}')
    start = time.perf_counter()
    for start_idx in tqdm(range(0, data_size, batch_size)):
        batch_lines = [line for line in data_lines[start_idx: min(start_idx + batch_size, data_size)]]
        batch_ids = [src_dict.encode_line(sentence, add_if_not_exist=False).long() for sentence in batch_lines]
        lengths = torch.LongTensor([t.numel() for t in batch_ids])
        batch_dataset = task.build_dataset_for_inference(batch_ids, lengths)
        batch_dataset.left_pad_source = True
        batch = batch_dataset.collater(batch_dataset)
        batch = utils.apply_to_sample(lambda t: t.to(device), batch)

        translations = generator.generate(models, batch, prefix_tokens=None)
        results = []
        for id, hypos in zip(batch["id"].tolist(), translations):
            results.append((id, hypos))
        batched_hypos = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
        all_results.extend([tgt_dict.string(hypos[0]['tokens']) for hypos in batched_hypos])
    delta = time.perf_counter() - start
    remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
    return remove_bpe_results, delta

@torch.no_grad()
def forward_decoder(model,
                    input_tokens,
                    encoder_out,
                    incremental_state,
                    parallel_forward_start_pos=None,
                    temperature=1.0,
                    use_log_softmax=True):
    decoder_out = model.decoder.forward(input_tokens,
                                        encoder_out=encoder_out,
                                        incremental_state=incremental_state,
                                        parallel_forward_start_pos=parallel_forward_start_pos)
    decoder_out_tuple = (decoder_out[0].div_(temperature), decoder_out[1])
    if use_log_softmax:
        # 1, len, vocab
        probs = model.get_normalized_probs(decoder_out_tuple, log_probs=True, sample=None)
    else:
        probs = decoder_out_tuple[0]
    # len
    pred_tokens = torch.argmax(probs, dim=-1).squeeze(0)
    return pred_tokens

@torch.no_grad()
def baseline_generate(data_lines, model, task, device, no_use_logsoft=False, max_len=200):
    # simplified greedy decoding
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary
    data_size = len(data_lines)
    all_results = []
    start = time.perf_counter()
    logger.info(f'Baseline generate')
    for start_idx in tqdm(range(0, data_size)):
        bpe_line = data_lines[start_idx]
        src_tokens = src_dict.encode_line(bpe_line, add_if_not_exist=False).long()
        net_input = {'src_tokens': src_tokens.unsqueeze(0).to(device),
                     'src_lengths': torch.LongTensor([src_tokens.numel()]).to(device)}
        encoder_out = model.encoder.forward_torchscript(net_input)
        incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
                                               torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))
        tokens = [tgt_dict.eos()]

        for step in range(0, max_len):
            cur_input_tokens = torch.tensor([tokens]).to(device).long()
            # scalar
            pred_token = forward_decoder(model,
                                         cur_input_tokens,
                                         encoder_out,
                                         incremental_state,
                                         use_log_softmax=not no_use_logsoft).item()
            if pred_token == tgt_dict.eos():
                break
            else:
                tokens.append(pred_token)
        all_results.append(tgt_dict.string(tokens[1:]))
    delta = time.perf_counter() - start
    remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
    return remove_bpe_results, delta

def construct_hash_sets(sent, min_gram=1, max_gram=3):
    hash_dict = {}
    for i in range(0, len(sent) - min_gram + 1):
        for j in range(min_gram, max_gram+1):
            if i + j <= len(sent):
                ngram = tuple(sent[i: i+j])
                if ngram not in hash_dict:
                    hash_dict[ngram] = []
                hash_dict[ngram].append(i+j)
    return hash_dict

def find_hash_sets(hash_set, tokens, min_gram=1, max_gram=3):
    for i in range(min_gram, max_gram+1):
        if len(tokens) < i:
            return -1
        ngram = tuple(tokens[-i:])
        if ngram not in hash_set:
            return -1
        if len(hash_set[ngram]) == 1:
            return hash_set[ngram][0]
    return -1

def cut_incremental_state(incremental_state, keep_len, encoder_state_ids):
    for n in incremental_state:
        if n[: n.index('.')] in encoder_state_ids:
            continue
        for k in incremental_state[n]:
            if incremental_state[n][k] is not None:
                if incremental_state[n][k].dim() == 4:
                    incremental_state[n][k] = incremental_state[n][k][:, :, :keep_len]
                elif incremental_state[n][k].dim() == 2:
                    incremental_state[n][k] = incremental_state[n][k][:, :keep_len]

@torch.no_grad()
def aggressive_generate(data_lines, model, task, device, no_use_logsoft=False, max_len=200):
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary
    encoder_state_ids = []
    for i in range(len(model.decoder.layers)):
        encoder_state_ids.append(model.decoder.layers[i].encoder_attn._incremental_state_id)
    data_size = len(data_lines)
    all_results = []
    start_time = time.perf_counter()
    for start_idx in tqdm(range(0, data_size)):
        bpe_line = data_lines[start_idx]
        src_tokens = src_dict.encode_line(bpe_line, add_if_not_exist=False).long()
        net_input = {'src_tokens': src_tokens.unsqueeze(0).to(device),
                     'src_lengths': torch.LongTensor([src_tokens.numel()]).to(device)}
        encoder_out = model.encoder.forward_torchscript(net_input)
        incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
                                               torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))

        src_tokens_remove_eos_list = src_tokens[:-1].tolist()
        src_hash = construct_hash_sets(src_tokens_remove_eos_list)
        start = 0
        tokens = [tgt_dict.eos()]
        while start < len(src_tokens_remove_eos_list) and len(tokens) < max_len + 1:
            cur_span_input_tokens = torch.tensor([tokens + src_tokens_remove_eos_list[start:]]).to(device).long()
            pred_tokens = forward_decoder(model,
                                          cur_span_input_tokens,
                                          encoder_out,
                                          incremental_state,
                                          parallel_forward_start_pos=len(tokens) - 1,
                                          use_log_softmax=not no_use_logsoft)
            pred_judge = pred_tokens.cpu() == src_tokens[start:]
            if all(pred_judge):
                tokens += src_tokens[start:].tolist()
                break
            else:
                wrong_pos = pred_judge.tolist().index(False)
                start += wrong_pos
                tokens.extend(pred_tokens.cpu().tolist()[: wrong_pos + 1])
                cut_incremental_state(incremental_state, keep_len=len(tokens) - 1, encoder_state_ids=encoder_state_ids)
                cur_len = len(tokens)
                for step in range(cur_len, max_len + 1):
                    cur_input_tokens = torch.tensor([tokens]).to(device).long()
                    pred_token = forward_decoder(model,
                                                 cur_input_tokens,
                                                 encoder_out,
                                                 incremental_state,
                                                 use_log_softmax=not no_use_logsoft).item()
                    if pred_token == tgt_dict.eos():
                        start = len(src_tokens_remove_eos_list)
                        break
                    else:
                        tokens.append(pred_token)
                    find_end_idx = find_hash_sets(src_hash, tokens)
                    if find_end_idx != -1:
                        start = find_end_idx
                        if start < len(src_tokens_remove_eos_list):
                            break
        if len(tokens) > max_len + 1:
            tokens = tokens[:max_len + 1]
        all_results.append(tgt_dict.string(tokens[1:]))
    delta = time.perf_counter() - start_time
    remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
    return remove_bpe_results, delta

@torch.no_grad()
def paper_aggressive_generate(data_lines, model, task, device, no_use_logsoft=False, max_len=200):
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary
    encoder_state_ids = []
    for i in range(len(model.decoder.layers)):
        encoder_state_ids.append(model.decoder.layers[i].encoder_attn._incremental_state_id)
    data_size = len(data_lines)
    all_results = []
    start_time = time.perf_counter()
    for start_idx in tqdm(range(0, data_size)):
        bpe_line = data_lines[start_idx]
        src_tokens = src_dict.encode_line(bpe_line, add_if_not_exist=False).long()
        net_input = {'src_tokens': src_tokens.unsqueeze(0).to(device),
                     'src_lengths': torch.LongTensor([src_tokens.numel()]).to(device)}
        encoder_out = model.encoder.forward_torchscript(net_input)
        incremental_state = torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]],
                                               torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}))

        src_tokens_remove_eos_list = src_tokens[:-1].tolist()
        src_hash = construct_hash_sets(src_tokens_remove_eos_list)

        src_tokens_add_pad_list = torch.tensor(src_tokens_remove_eos_list + [-1])  # [..., -1]

        tokens = [tgt_dict.eos()]
        while (len(tokens) == 1 or tokens[-1] != tgt_dict.eos()) and len(tokens) < max_len + 1:
            if len(tokens) == 1:
                find_end_idx = 0
            else:
                find_end_idx = find_hash_sets(src_hash, tokens)
            if find_end_idx != -1 and find_end_idx < len(src_tokens_remove_eos_list):
                cur_span_input_tokens = torch.tensor([tokens + src_tokens_remove_eos_list[find_end_idx:]]).to(device).long()
                pred_tokens = forward_decoder(model,
                                              cur_span_input_tokens,
                                              encoder_out,
                                              incremental_state,
                                              parallel_forward_start_pos=len(tokens) - 1,
                                              use_log_softmax=not no_use_logsoft)
                pred_judge = pred_tokens.cpu() == src_tokens_add_pad_list[find_end_idx:]
                wrong_pos = pred_judge.tolist().index(False)
                tokens.extend(pred_tokens.cpu().tolist()[: wrong_pos + 1])
                cut_incremental_state(incremental_state, keep_len=len(tokens) - 1, encoder_state_ids=encoder_state_ids)
            else:
                cur_input_tokens = torch.tensor([tokens]).to(device).long()
                pred_token = forward_decoder(model,
                                             cur_input_tokens,
                                             encoder_out,
                                             incremental_state,
                                             use_log_softmax=not no_use_logsoft).item()
                tokens.append(pred_token)
        if len(tokens) > max_len + 1:
            tokens = tokens[:max_len + 1]
        if tokens[-1] == tgt_dict.eos():
            tokens = tokens[:-1]
        all_results.append(tgt_dict.string(tokens[1:]))
    delta = time.perf_counter() - start_time
    remove_bpe_results = [line.replace('@@ ', '') for line in all_results]
    return remove_bpe_results, delta

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint-path', type=str, required=True,
                        help='path to model file, e.g., /to/path/checkpoint_best.pt')
    parser.add_argument('--bin-data', type=str, required=True,
                        help='directory containing src and tgt dictionaries')
    parser.add_argument('--input-path', type=str, required=True,
                        help='path to eval file, e.g., /to/path/conll14.bpe.txt')
    parser.add_argument('--output-path', type=str, default=None,
                        help='path to output file, e.g., /to/path/conll14.pred.txt')
    parser.add_argument('--batch', type=int, default=None,
                        help='batch size')
    parser.add_argument('--beam', type=int, default=5,
                        help='beam size')
    parser.add_argument('--baseline', action='store_true', default=False,
                        help='greedy/one-by-one decoding')
    parser.add_argument('--aggressive', action='store_true', default=False,
                        help='aggressive decoding')
    parser.add_argument('--no_use_logsoft', action='store_true', default=False,
                        help='not use log_softmax when aggressive decoding')
    parser.add_argument('--block', type=int, default=None)
    parser.add_argument('--match', type=int, default=1)
    parser.add_argument('--cpu', action='store_true', default=False)
    cmd_args = parser.parse_args()

    cmd_args.checkpoint_path = os.path.expanduser(cmd_args.checkpoint_path)
    cmd_args.bin_data = os.path.expanduser(cmd_args.bin_data)
    cmd_args.input_path = os.path.expanduser(cmd_args.input_path)
    cmd_args.output_path = os.path.expanduser(cmd_args.output_path)

    models, args, task = load_model_ensemble_and_task(filenames=[cmd_args.checkpoint_path],
                                                    arg_overrides={'data': cmd_args.bin_data})
    if cmd_args.cpu:
        device = torch.device('cpu')
    else:
        device = torch.device('cuda')
    model = models[0].to(device).eval()

    with open(cmd_args.input_path, 'r') as f:
        bpe_sents = [l.strip() for l in f.readlines()]

    if cmd_args.batch is not None:
        remove_bpe_results, delta = fairseq_generate(bpe_sents, args, models, task, cmd_args.batch, cmd_args.beam, device)
        logger.info(f'Fairseq generate batch {cmd_args.batch}, beam {cmd_args.beam}: {delta}')
    elif cmd_args.baseline:
        remove_bpe_results, delta = baseline_generate(bpe_sents, model, task, device, no_use_logsoft=cmd_args.no_use_logsoft)
        logger.info(f'Baseline generate: {delta}')
    elif cmd_args.aggressive:
        remove_bpe_results, delta = paper_aggressive_generate(bpe_sents, model, task, device, no_use_logsoft=cmd_args.no_use_logsoft)
        # remove_bpe_results, delta = aggressive_generate(bpe_sents, model, task, device, no_use_logsoft=cmd_args.no_use_logsoft)
        logger.info(f'Aggressive generate: {delta}')
    if cmd_args.output_path is not None:
        write_result(remove_bpe_results, cmd_args.output_path)