|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from fairseq import utils |
|
from fairseq.iterative_refinement_generator import DecoderOut |
|
from fairseq.models import register_model, register_model_architecture |
|
from fairseq.models.nat import FairseqNATModel |
|
from fairseq.modules.transformer_sentence_encoder import init_bert_params |
|
import torch |
|
from fairseq.models.nat.nonautoregressive_transformer import NATransformerEncoder, NATransformerDecoder, NATransformerModel |
|
import logging |
|
import random |
|
from contextlib import contextmanager |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@contextmanager |
|
def torch_seed(seed): |
|
state = torch.random.get_rng_state() |
|
state_cuda = torch.cuda.random.get_rng_state() |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
try: |
|
yield |
|
finally: |
|
torch.random.set_rng_state(state) |
|
torch.cuda.random.set_rng_state(state_cuda) |
|
|
|
|
|
@register_model("block") |
|
class BlockNAT(FairseqNATModel): |
|
forward_decoder = NATransformerModel.forward_decoder |
|
initialize_output_tokens = NATransformerModel.initialize_output_tokens |
|
|
|
def __init__(self, args, encoder, decoder): |
|
super().__init__(args, encoder, decoder) |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
FairseqNATModel.add_args(parser) |
|
|
|
parser.add_argument( |
|
"--src-embedding-copy", |
|
action="store_true", |
|
help="copy encoder word embeddings as the initial input of the decoder", |
|
) |
|
|
|
@classmethod |
|
def build_encoder(cls, args, tgt_dict, embed_tokens): |
|
encoder = NATransformerEncoder(args, tgt_dict, embed_tokens) |
|
if getattr(args, "apply_bert_init", False): |
|
encoder.apply(init_bert_params) |
|
return encoder |
|
|
|
@classmethod |
|
def build_decoder(cls, args, tgt_dict, embed_tokens): |
|
decoder = NATransformerDecoder(args, tgt_dict, embed_tokens) |
|
if getattr(args, "apply_bert_init", False): |
|
decoder.apply(init_bert_params) |
|
return decoder |
|
|
|
def forward( |
|
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, glat=None, **kwargs |
|
): |
|
|
|
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) |
|
|
|
nonpad_positions = tgt_tokens.ne(self.pad) |
|
mask_positions = prev_output_tokens.eq(self.unk) & nonpad_positions |
|
mask_lens = (mask_positions).sum(1) |
|
l2r_positions = prev_output_tokens.ne(self.unk) & prev_output_tokens.ne(self.pad) |
|
l2r_lens = (l2r_positions).sum(1) |
|
rand_seed = random.randint(0, 19260817) |
|
glat_info = None |
|
if glat and tgt_tokens is not None: |
|
with torch.no_grad(): |
|
with torch_seed(rand_seed): |
|
word_ins_out = self.decoder( |
|
normalize=False, |
|
prev_output_tokens=prev_output_tokens, |
|
encoder_out=encoder_out, |
|
) |
|
pred_tokens = word_ins_out.argmax(-1) |
|
same_num = ((pred_tokens == tgt_tokens) & mask_positions).sum(1) |
|
input_mask = torch.ones_like(nonpad_positions) |
|
bsz, seq_len = tgt_tokens.size() |
|
for li in range(bsz): |
|
target_num = (((mask_lens[li] - same_num[li].sum()).float()) * glat['context_p']).long() |
|
if target_num > 0: |
|
input_mask[li].scatter_(dim=0, index=(torch.randperm(mask_lens[li])[:target_num].cuda() + |
|
l2r_lens[li]).cuda(), value=0) |
|
input_mask = input_mask.eq(1) |
|
tgt_mask = input_mask.masked_fill(~mask_positions, False) |
|
glat_prev_output_tokens = prev_output_tokens.masked_fill(~input_mask, 0) + tgt_tokens.masked_fill( |
|
input_mask, 0) |
|
glat_tgt_tokens = tgt_tokens.masked_fill(~tgt_mask, self.pad) |
|
|
|
prev_output_tokens, tgt_tokens = glat_prev_output_tokens, glat_tgt_tokens |
|
glat_info = { |
|
"glat_accu": (same_num.sum() / mask_lens.sum()).item(), |
|
"glat_context_p": glat['context_p'], |
|
} |
|
with torch_seed(rand_seed): |
|
word_ins_out = self.decoder( |
|
normalize=False, |
|
prev_output_tokens=prev_output_tokens, |
|
encoder_out=encoder_out, |
|
) |
|
|
|
ret = { |
|
"word_ins": { |
|
"out": word_ins_out, |
|
"tgt": tgt_tokens, |
|
"mask": tgt_tokens.ne(self.pad), |
|
"ls": self.args.label_smoothing, |
|
"nll_loss": True, |
|
} |
|
} |
|
if glat_info is not None: |
|
ret.update(glat_info) |
|
return ret |
|
|
|
|
|
@register_model_architecture( |
|
"block", "block_6e6d512" |
|
) |
|
def base_architecture(args): |
|
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) |
|
args.encoder_layers = getattr(args, "encoder_layers", 6) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) |
|
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) |
|
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) |
|
args.decoder_ffn_embed_dim = getattr( |
|
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim |
|
) |
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) |
|
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.0) |
|
args.activation_dropout = getattr(args, "activation_dropout", 0.0) |
|
args.activation_fn = getattr(args, "activation_fn", "relu") |
|
args.dropout = getattr(args, "dropout", 0.1) |
|
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) |
|
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) |
|
args.share_decoder_input_output_embed = getattr( |
|
args, "share_decoder_input_output_embed", False |
|
) |
|
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) |
|
args.no_token_positional_embeddings = getattr( |
|
args, "no_token_positional_embeddings", False |
|
) |
|
args.adaptive_input = getattr(args, "adaptive_input", False) |
|
args.apply_bert_init = getattr(args, "apply_bert_init", False) |
|
|
|
args.decoder_output_dim = getattr( |
|
args, "decoder_output_dim", args.decoder_embed_dim |
|
) |
|
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) |
|
|
|
|
|
args.src_embedding_copy = getattr(args, "src_embedding_copy", False) |
|
|
|
|
|
@register_model_architecture( |
|
"block", "block" |
|
) |
|
def block_architecture(args): |
|
args.encoder_layers = getattr(args, "encoder_layers", 6) |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", args.encoder_embed_dim*4) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", args.encoder_embed_dim//64) |
|
|
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) |
|
args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", args.decoder_embed_dim*4) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", args.decoder_embed_dim//64) |
|
base_architecture(args) |
|
|
|
@register_model_architecture( |
|
"block", "block_base" |
|
) |
|
def base_architecture2(args): |
|
base_architecture(args) |
|
|