File size: 8,150 Bytes
6fc683c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
from fairseq import utils
from fairseq.iterative_refinement_generator import DecoderOut
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import FairseqNATModel
from fairseq.modules.transformer_sentence_encoder import init_bert_params
import torch
from fairseq.models.nat.nonautoregressive_transformer import NATransformerEncoder, NATransformerDecoder, NATransformerModel
import logging
import random
from contextlib import contextmanager

logger = logging.getLogger(__name__)


@contextmanager
def torch_seed(seed):
    state = torch.random.get_rng_state()
    state_cuda = torch.cuda.random.get_rng_state()
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    try:
        yield
    finally:
        torch.random.set_rng_state(state)
        torch.cuda.random.set_rng_state(state_cuda)


@register_model("block")
class BlockNAT(FairseqNATModel):
    forward_decoder = NATransformerModel.forward_decoder
    initialize_output_tokens = NATransformerModel.initialize_output_tokens

    def __init__(self, args, encoder, decoder):
        super().__init__(args, encoder, decoder)

    @staticmethod
    def add_args(parser):
        FairseqNATModel.add_args(parser)

        parser.add_argument(
            "--src-embedding-copy",
            action="store_true",
            help="copy encoder word embeddings as the initial input of the decoder",
        )

    @classmethod
    def build_encoder(cls, args, tgt_dict, embed_tokens):
        encoder = NATransformerEncoder(args, tgt_dict, embed_tokens)
        if getattr(args, "apply_bert_init", False):
            encoder.apply(init_bert_params)
        return encoder

    @classmethod
    def build_decoder(cls, args, tgt_dict, embed_tokens):
        decoder = NATransformerDecoder(args, tgt_dict, embed_tokens)
        if getattr(args, "apply_bert_init", False):
            decoder.apply(init_bert_params)
        return decoder

    def forward(
            self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, glat=None, **kwargs
    ):
        # encoding
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)

        nonpad_positions = tgt_tokens.ne(self.pad)
        mask_positions = prev_output_tokens.eq(self.unk) & nonpad_positions
        mask_lens = (mask_positions).sum(1)
        l2r_positions = prev_output_tokens.ne(self.unk) & prev_output_tokens.ne(self.pad)
        l2r_lens = (l2r_positions).sum(1)
        rand_seed = random.randint(0, 19260817)
        glat_info = None
        if glat and tgt_tokens is not None:
            with torch.no_grad():
                with torch_seed(rand_seed):
                    word_ins_out = self.decoder(
                        normalize=False,
                        prev_output_tokens=prev_output_tokens,
                        encoder_out=encoder_out,
                    )
                pred_tokens = word_ins_out.argmax(-1)
                same_num = ((pred_tokens == tgt_tokens) & mask_positions).sum(1)
                input_mask = torch.ones_like(nonpad_positions)
                bsz, seq_len = tgt_tokens.size()
                for li in range(bsz):
                    target_num = (((mask_lens[li] - same_num[li].sum()).float()) * glat['context_p']).long()
                    if target_num > 0:
                        input_mask[li].scatter_(dim=0, index=(torch.randperm(mask_lens[li])[:target_num].cuda() +
                                                              l2r_lens[li]).cuda(), value=0)
                input_mask = input_mask.eq(1)
                tgt_mask = input_mask.masked_fill(~mask_positions, False)
                glat_prev_output_tokens = prev_output_tokens.masked_fill(~input_mask, 0) + tgt_tokens.masked_fill(
                    input_mask, 0)
                glat_tgt_tokens = tgt_tokens.masked_fill(~tgt_mask, self.pad)

                prev_output_tokens, tgt_tokens = glat_prev_output_tokens, glat_tgt_tokens
                glat_info = {
                    "glat_accu": (same_num.sum() / mask_lens.sum()).item(),
                    "glat_context_p": glat['context_p'],
                }
        with torch_seed(rand_seed):
            word_ins_out = self.decoder(
                normalize=False,
                prev_output_tokens=prev_output_tokens,
                encoder_out=encoder_out,
            )

        ret = {
            "word_ins": {
                "out": word_ins_out,
                "tgt": tgt_tokens,
                "mask": tgt_tokens.ne(self.pad),
                "ls": self.args.label_smoothing,
                "nll_loss": True,
            }
        }
        if glat_info is not None:
            ret.update(glat_info)
        return ret


@register_model_architecture(
    "block", "block_6e6d512"
)
def base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.apply_bert_init = getattr(args, "apply_bert_init", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    # --- special arguments ---
    args.src_embedding_copy = getattr(args, "src_embedding_copy", False)


@register_model_architecture(
    "block", "block"
)
def block_architecture(args):
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", args.encoder_embed_dim*4)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", args.encoder_embed_dim//64)

    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512)
    args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", args.decoder_embed_dim*4)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", args.decoder_embed_dim//64)
    base_architecture(args)

@register_model_architecture(
    "block", "block_base"
)
def base_architecture2(args):
    base_architecture(args)