Spaces:
Sleeping
Sleeping
A newer version of the Gradio SDK is available:
5.29.0
ADE20k Semantic Segmentation with BEiT
Getting Started
- Install the mmsegmentation library and some required packages.
pip install mmcv-full==1.3.0 mmsegmentation==0.11.0
pip install scipy timm==0.3.2
- Install apex for mixed-precision training
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
- Follow the guide in mmseg to prepare the ADE20k dataset.
Fine-tuning
Command format:
tools/dist_train.sh <CONFIG_PATH> <NUM_GPUS> --work-dir <SAVE_PATH> --seed 0 --deterministic --options model.pretrained=<IMAGENET_CHECKPOINT_PATH/URL>
Using a BEiT-base backbone with UperNet:
bash tools/dist_train.sh \
configs/beit/upernet/upernet_beit_base_12_512_slide_160k_21ktoade20k.py 8 \
--work-dir /path/to/save --seed 0 --deterministic \
--options model.pretrained=https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_base_patch16_224_pt1k_ft21k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D
Using a BEiT-large backbone with UperNet:
bash tools/dist_train.sh \
configs/beit/upernet/upernet_beit_large_24_512_slide_160k_21ktoade20k.py 8 \
--work-dir /path/to/save --seed 0 --deterministic \
--options model.pretrained=https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D
Evaluation
Command format:
tools/dist_test.sh <CONFIG_PATH> <CHECKPOINT_PATH> <NUM_GPUS> --eval mIoU
For example, evaluate a BEiT-large backbone with UperNet:
bash tools/dist_test.sh configs/beit/upernet/upernet_beit_large_24_512_slide_160k_21ktoade20k.py \
https://conversationhub.blob.core.windows.net/beit-share-public/beitv2/beitv2_large_patch16_224_pt1k_ft21ktoade20k.pth?sv=2021-10-04&st=2023-06-08T11%3A16%3A02Z&se=2033-06-09T11%3A16%3A00Z&sr=c&sp=r&sig=N4pfCVmSeq4L4tS8QbrFVsX6f6q844eft8xSuXdxU48%3D 4 --eval mIoU
Expected results:
+--------+-------+-------+-------+
| Scope | mIoU | mAcc | aAcc |
+--------+-------+-------+-------+
| global | 57.54 | 68.78 | 86.22 |
+--------+-------+-------+-------+
Acknowledgment
This code is built using the mmsegmentation library, Timm library, the Swin repository, XCiT and the SETR repository.