Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beitv2 | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# By Zhiliang Peng | |
# Based on BEiT, timm, DeiT and DINO code bases | |
# https://github.com/microsoft/unilm/tree/master/beit | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm | |
# https://github.com/facebookresearch/deit/ | |
# https://github.com/facebookresearch/dino | |
# --------------------------------------------------------' | |
import argparse | |
import datetime | |
import numpy as np | |
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import json | |
import os | |
from pathlib import Path | |
from timm.models import create_model | |
from optim_factory import create_optimizer | |
from datasets import build_vqkd_dataset | |
from engine_for_vqkd import evaluate, train_one_epoch, calculate_codebook_usage | |
from utils import NativeScalerWithGradNormCount as NativeScaler | |
import utils | |
import modeling_vqkd | |
def get_args(): | |
parser = argparse.ArgumentParser('BEiT pre-training script', add_help=False) | |
parser.add_argument('--batch_size', default=64, type=int) | |
parser.add_argument('--epochs', default=100, type=int) | |
parser.add_argument('--save_ckpt_freq', default=20, type=int) | |
# Model parameters | |
parser.add_argument('--model', default='vqkd_encoder_base_decoder_3x768x12_clip', type=str, metavar='MODEL', help='Name of model to train') | |
parser.add_argument('--rec_loss_type', default='cosine', type=str, metavar='MODEL', | |
help='type of loss to calculate reconstruction distance') | |
parser.add_argument('--codebook_n_emd', default=8192, type=int, metavar='MODEL', | |
help='number of codebook') | |
parser.add_argument('--codebook_emd_dim', default=32, type=int, metavar='MODEL', | |
help='number of codebook') | |
parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer') | |
parser.add_argument('--quantize_kmeans_init', action='store_true', help='enable kmeans_init for quantizer') | |
parser.add_argument('--process_type', default='default', type=str, choices=['default', 'dall-e', 'imagenet_norm'], | |
help='Image process type (default, dall-e)') | |
parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone') | |
# regress feature | |
parser.add_argument('--teacher_model_type', default='clip', type=str, help='teacher_model_type during training') | |
parser.add_argument('--teacher_input_size', default=224, type=int, help='teacher_input_size for clip-large p14') | |
# Optimizer parameters | |
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', | |
help='Optimizer (default: "adamw"') | |
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', | |
help='Optimizer Epsilon (default: 1e-8)') | |
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', | |
help='Optimizer Betas (default: None, use opt default)') | |
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', | |
help='Clip gradient norm (default: None, no clipping)') | |
parser.add_argument('--weight_decay', type=float, default=1e-4, | |
help='weight decay (default: 1e-4)') | |
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the | |
weight decay. We use a cosine schedule for WD. | |
(Set the same value with args.weight_decay to keep weight decay no change)""") | |
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR', | |
help='learning rate (default: 5e-5)') | |
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', | |
help='warmup learning rate (default: 1e-6)') | |
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', | |
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') | |
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
# Augmentation parameters | |
parser.add_argument('--color_jitter', type=float, default=0., metavar='PCT', | |
help='Color jitter factor (default: 0.)') | |
parser.add_argument('--train_interpolation', type=str, default='bicubic', | |
help='Training interpolation (random, bilinear, bicubic, lanczos default: "bicubic")') | |
parser.add_argument('--min_crop_scale', type=float, default=0.08, metavar='PCT', | |
help='min_crop_scale (default: 0.08)') | |
# Dataset parameters | |
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, | |
help='dataset path') | |
parser.add_argument('--eval_data_path', default='', type=str, help='dataset path') | |
parser.add_argument('--data_set', default='image_folder', type=str, help='dataset path') | |
parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') | |
parser.add_argument('--output_dir', default='', | |
help='path where to save, empty for no saving') | |
parser.add_argument('--log_dir', default=None, | |
help='path where to tensorboard log') | |
parser.add_argument('--device', default='cuda', | |
help='device to use for training / testing') | |
parser.add_argument('--seed', default=0, type=int) | |
parser.add_argument('--resume', default='', help='resume from checkpoint') | |
parser.add_argument('--auto_resume', action='store_true') | |
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') | |
parser.set_defaults(auto_resume=True) | |
parser.add_argument('--dist_eval', action='store_true', default=True, | |
help='Enabling distributed evaluation') | |
parser.add_argument('--disable_eval', action='store_true', default=False) | |
parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only") | |
parser.add_argument('--calculate_codebook_usage', action='store_true', default=False) | |
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', | |
help='start epoch') | |
parser.add_argument('--num_workers', default=10, type=int) | |
parser.add_argument('--pin_mem', action='store_true', | |
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') | |
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', | |
help='') | |
parser.set_defaults(pin_mem=True) | |
# distributed training parameters | |
parser.add_argument('--world_size', default=1, type=int, | |
help='number of distributed processes') | |
parser.add_argument('--local_rank', default=-1, type=int) | |
parser.add_argument('--dist_on_itp', action='store_true') | |
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') | |
return parser.parse_args() | |
def get_model(args, **kwargs): | |
model = create_model( | |
args.model, | |
pretrained=False, | |
as_tokenzer=False, | |
n_code=args.codebook_n_emd, | |
code_dim=args.codebook_emd_dim, | |
img_size=args.input_size, | |
rec_loss_type=args.rec_loss_type, | |
teacher_model_type=args.teacher_model_type, | |
teacher_input_size=args.teacher_input_size, | |
decay=args.ema_decay, | |
quantize_kmeans_init=args.quantize_kmeans_init, | |
process_type=args.process_type | |
) | |
return model | |
def main(args): | |
utils.init_distributed_mode(args) | |
print(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
# random.seed(seed) | |
cudnn.benchmark = True | |
model = get_model(args) | |
# get dataset | |
dataset_train = build_vqkd_dataset(is_train=True, args=args) | |
if args.disable_eval: | |
dataset_val = None | |
else: | |
dataset_val = build_vqkd_dataset(is_train=False, args=args) | |
if True: # args.distributed: | |
num_tasks = utils.get_world_size() | |
global_rank = utils.get_rank() | |
sampler_rank = global_rank | |
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks | |
sampler_train = torch.utils.data.DistributedSampler( | |
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True | |
) | |
print("Sampler_train = %s" % str(sampler_train)) | |
if args.dist_eval: | |
if len(dataset_val) % num_tasks != 0: | |
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' | |
'This will slightly alter validation results as extra duplicate entries are added to achieve ' | |
'equal num of samples per-process.') | |
sampler_val = torch.utils.data.DistributedSampler( | |
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) | |
else: | |
sampler_val = torch.utils.data.SequentialSampler(dataset_val) | |
else: | |
sampler_train = torch.utils.data.RandomSampler(dataset_train) | |
sampler_val = torch.utils.data.SequentialSampler(dataset_val) | |
if global_rank == 0 and args.log_dir is not None: | |
os.makedirs(args.log_dir, exist_ok=True) | |
log_writer = utils.TensorboardLogger(log_dir=args.log_dir) | |
else: | |
log_writer = None | |
data_loader_train = torch.utils.data.DataLoader( | |
dataset_train, sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=True, | |
) | |
if dataset_val is not None: | |
data_loader_val = torch.utils.data.DataLoader( | |
dataset_val, sampler=sampler_val, | |
batch_size=int(1.5 * args.batch_size), | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=False | |
) | |
else: | |
data_loader_val = None | |
model.to(device) | |
model_without_ddp = model | |
if not args.eval: | |
print("Model = %s" % str(model_without_ddp)) | |
for part in ['encoder', 'decoder']: | |
model_part = eval(f"model.{part}") | |
n_learnable_parameters = sum(p.numel() for p in model_part.parameters() if p.requires_grad) | |
n_fix_parameters = sum(p.numel() for p in model_part.parameters() if not p.requires_grad) | |
print(f'number of learnable params in model.{part}: {n_learnable_parameters / 1e6} M') | |
print(f'number of fixed params in model.{part}: {n_fix_parameters / 1e6} M') | |
n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad) | |
print(f'total number of learnable params: {n_learnable_parameters / 1e6} M') | |
print(f'total number of fixed params in : {n_fix_parameters / 1e6} M') | |
total_batch_size = args.batch_size * utils.get_world_size() | |
args.lr = total_batch_size / 128 * args.lr | |
print("LR = %.8f" % args.lr) | |
print("Min LR = %.8f" % args.min_lr) | |
print("Weigth Decay = %.8f" % args.weight_decay) | |
print("Batch size = %d" % total_batch_size) | |
print("Number of training steps = %d" % num_training_steps_per_epoch) | |
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) | |
optimizer = create_optimizer(args, model_without_ddp) | |
loss_scaler = NativeScaler() | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) | |
model_without_ddp = model.module | |
print("Use step level LR & WD scheduler!") | |
lr_schedule_values = utils.cosine_scheduler( | |
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, | |
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, | |
) | |
utils.auto_load_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) | |
if args.eval: | |
test_stats = evaluate(data_loader_val, model, device, log_writer, 0, args=args) | |
exit(0) | |
if args.calculate_codebook_usage: | |
test_stats = calculate_codebook_usage(data_loader_val, model, device, log_writer, 0, args=args) | |
exit(0) | |
print(f"Start training for {args.epochs} epochs") | |
start_time = time.time() | |
for epoch in range(args.start_epoch, args.epochs): | |
if args.distributed: | |
data_loader_train.sampler.set_epoch(epoch) | |
if log_writer is not None: | |
log_writer.set_step(epoch * num_training_steps_per_epoch) | |
train_stats = train_one_epoch( | |
model, | |
data_loader_train, | |
optimizer, | |
device, | |
epoch, | |
loss_scaler, | |
args.clip_grad, | |
log_writer=log_writer, | |
start_steps=epoch * num_training_steps_per_epoch, | |
lr_schedule_values=lr_schedule_values, | |
args=args | |
) | |
if args.output_dir: | |
# if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq) | |
if data_loader_val is not None: | |
test_stats = evaluate(data_loader_val, model, device, log_writer, epoch, args=args) | |
print(f"Validation loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.4f}") | |
if log_writer is not None: | |
log_writer.update(**test_stats, head="val/loss") | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
**{f'test_{k}': v for k, v in test_stats.items()}, | |
'epoch': epoch, 'n_parameters': n_learnable_parameters} | |
else: | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, 'n_parameters': n_learnable_parameters} | |
if args.output_dir and utils.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
opts = get_args() | |
if opts.output_dir: | |
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) | |
main(opts) | |