Spaces:
Sleeping
Sleeping
File size: 15,480 Bytes
6fc683c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# --------------------------------------------------------
# BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers (https://arxiv.org/abs/2208.06366)
# Github source: https://github.com/microsoft/unilm/tree/master/beitv2
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# By Zhiliang Peng
# Based on BEiT, timm, DeiT and DINO code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
from pathlib import Path
from timm.models import create_model
from optim_factory import create_optimizer
from datasets import build_vqkd_dataset
from engine_for_vqkd import evaluate, train_one_epoch, calculate_codebook_usage
from utils import NativeScalerWithGradNormCount as NativeScaler
import utils
import modeling_vqkd
def get_args():
parser = argparse.ArgumentParser('BEiT pre-training script', add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--save_ckpt_freq', default=20, type=int)
# Model parameters
parser.add_argument('--model', default='vqkd_encoder_base_decoder_3x768x12_clip', type=str, metavar='MODEL', help='Name of model to train')
parser.add_argument('--rec_loss_type', default='cosine', type=str, metavar='MODEL',
help='type of loss to calculate reconstruction distance')
parser.add_argument('--codebook_n_emd', default=8192, type=int, metavar='MODEL',
help='number of codebook')
parser.add_argument('--codebook_emd_dim', default=32, type=int, metavar='MODEL',
help='number of codebook')
parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer')
parser.add_argument('--quantize_kmeans_init', action='store_true', help='enable kmeans_init for quantizer')
parser.add_argument('--process_type', default='default', type=str, choices=['default', 'dall-e', 'imagenet_norm'],
help='Image process type (default, dall-e)')
parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone')
# regress feature
parser.add_argument('--teacher_model_type', default='clip', type=str, help='teacher_model_type during training')
parser.add_argument('--teacher_input_size', default=224, type=int, help='teacher_input_size for clip-large p14')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD.
(Set the same value with args.weight_decay to keep weight decay no change)""")
parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
help='learning rate (default: 5e-5)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=0., metavar='PCT',
help='Color jitter factor (default: 0.)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic, lanczos default: "bicubic")')
parser.add_argument('--min_crop_scale', type=float, default=0.08, metavar='PCT',
help='min_crop_scale (default: 0.08)')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--eval_data_path', default='', type=str, help='dataset path')
parser.add_argument('--data_set', default='image_folder', type=str, help='dataset path')
parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--dist_eval', action='store_true', default=True,
help='Enabling distributed evaluation')
parser.add_argument('--disable_eval', action='store_true', default=False)
parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only")
parser.add_argument('--calculate_codebook_usage', action='store_true', default=False)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser.parse_args()
def get_model(args, **kwargs):
model = create_model(
args.model,
pretrained=False,
as_tokenzer=False,
n_code=args.codebook_n_emd,
code_dim=args.codebook_emd_dim,
img_size=args.input_size,
rec_loss_type=args.rec_loss_type,
teacher_model_type=args.teacher_model_type,
teacher_input_size=args.teacher_input_size,
decay=args.ema_decay,
quantize_kmeans_init=args.quantize_kmeans_init,
process_type=args.process_type
)
return model
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
model = get_model(args)
# get dataset
dataset_train = build_vqkd_dataset(is_train=True, args=args)
if args.disable_eval:
dataset_val = None
else:
dataset_val = build_vqkd_dataset(is_train=False, args=args)
if True: # args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_rank = global_rank
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if dataset_val is not None:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
else:
data_loader_val = None
model.to(device)
model_without_ddp = model
if not args.eval:
print("Model = %s" % str(model_without_ddp))
for part in ['encoder', 'decoder']:
model_part = eval(f"model.{part}")
n_learnable_parameters = sum(p.numel() for p in model_part.parameters() if p.requires_grad)
n_fix_parameters = sum(p.numel() for p in model_part.parameters() if not p.requires_grad)
print(f'number of learnable params in model.{part}: {n_learnable_parameters / 1e6} M')
print(f'number of fixed params in model.{part}: {n_fix_parameters / 1e6} M')
n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad)
print(f'total number of learnable params: {n_learnable_parameters / 1e6} M')
print(f'total number of fixed params in : {n_fix_parameters / 1e6} M')
total_batch_size = args.batch_size * utils.get_world_size()
args.lr = total_batch_size / 128 * args.lr
print("LR = %.8f" % args.lr)
print("Min LR = %.8f" % args.min_lr)
print("Weigth Decay = %.8f" % args.weight_decay)
print("Batch size = %d" % total_batch_size)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
test_stats = evaluate(data_loader_val, model, device, log_writer, 0, args=args)
exit(0)
if args.calculate_codebook_usage:
test_stats = calculate_codebook_usage(data_loader_val, model, device, log_writer, 0, args=args)
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(
model,
data_loader_train,
optimizer,
device,
epoch,
loss_scaler,
args.clip_grad,
log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
args=args
)
if args.output_dir:
# if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq)
if data_loader_val is not None:
test_stats = evaluate(data_loader_val, model, device, log_writer, epoch, args=args)
print(f"Validation loss of the network on the {len(dataset_val)} test images: {test_stats['loss']:.4f}")
if log_writer is not None:
log_writer.update(**test_stats, head="val/loss")
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch, 'n_parameters': n_learnable_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_learnable_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)
|