TruthLens commited on
Commit
928e0f8
·
verified ·
1 Parent(s): 723860c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -20
app.py CHANGED
@@ -2,7 +2,7 @@ import os
2
  from flask import Flask, request, render_template_string
3
  from PIL import Image
4
  import torch
5
- from transformers import CLIPProcessor, CLIPModel
6
 
7
  app = Flask(__name__)
8
 
@@ -10,28 +10,54 @@ app = Flask(__name__)
10
  upload_folder = os.path.join('static', 'uploads')
11
  os.makedirs(upload_folder, exist_ok=True)
12
 
13
- # Load CLIP model and processor
 
 
 
 
 
 
 
14
  clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
15
  clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
16
 
17
- # HTML Template with Model Selection and Explanations
18
  HTML_TEMPLATE = """
19
  <!DOCTYPE html>
20
  <html lang="en">
21
  <head>
22
  <meta charset="UTF-8">
23
- <title>AI vs. Human Image Detection</title>
24
  <style>
25
  body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
26
  .container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
27
- input[type="file"], button { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
28
- button { background-color: #4CAF50; color: white; border: none; font-size: 16px; cursor: pointer; }
29
  button:hover { background-color: #45a049; }
30
  .result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
31
  </style>
32
  </head>
33
  <body>
34
  <div class="container">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  <h1>🖼️ AI vs. Human Image Detection</h1>
36
  <form method="POST" action="/detect_image" enctype="multipart/form-data">
37
  <input type="file" name="image" required>
@@ -41,8 +67,8 @@ HTML_TEMPLATE = """
41
  {% if image_prediction %}
42
  <div class="result">
43
  <h2>📷 Image Detection Result:</h2>
44
- <p>{{ image_prediction }}</p>
45
- <p><strong>Explanation:</strong> The model compares the image to text prompts representing AI-generated and human-created images. The prediction is based on which prompt the image is more similar to.</p>
46
  </div>
47
  {% endif %}
48
  </div>
@@ -54,6 +80,21 @@ HTML_TEMPLATE = """
54
  def home():
55
  return render_template_string(HTML_TEMPLATE)
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  @app.route("/detect_image", methods=["POST"])
58
  def detect_image():
59
  if "image" not in request.files:
@@ -62,26 +103,23 @@ def detect_image():
62
  file = request.files["image"]
63
  img = Image.open(file).convert("RGB")
64
 
65
- # Text prompts for comparison
66
  prompts = ["AI-generated image", "Human-created image"]
67
-
68
- # Process image and text inputs
69
  inputs = clip_processor(text=prompts, images=img, return_tensors="pt", padding=True)
70
 
71
  with torch.no_grad():
72
  outputs = clip_model(**inputs)
73
- logits_per_image = outputs.logits_per_image.squeeze()
74
- probs = logits_per_image.softmax(dim=0)
75
 
76
- ai_score, human_score = probs.tolist()
77
- prediction = "AI-Generated" if ai_score > human_score else "Human-Created"
78
 
79
- result_text = (
80
- f"Prediction: {prediction} <br>"
81
- f"AI Similarity: {ai_score * 100:.2f}% | Human Similarity: {human_score * 100:.2f}%"
82
  )
83
 
84
- return render_template_string(HTML_TEMPLATE, image_prediction=result_text)
85
 
86
  if __name__ == "__main__":
87
- app.run(host="0.0.0.0", port=7860) # Suitable for public launch
 
2
  from flask import Flask, request, render_template_string
3
  from PIL import Image
4
  import torch
5
+ from transformers import pipeline, CLIPProcessor, CLIPModel
6
 
7
  app = Flask(__name__)
8
 
 
10
  upload_folder = os.path.join('static', 'uploads')
11
  os.makedirs(upload_folder, exist_ok=True)
12
 
13
+ # Fake News Detection Models
14
+ news_models = {
15
+ "mrm8488": pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection"),
16
+ "google-electra": pipeline("text-classification", model="google/electra-base-discriminator"),
17
+ "bert-base": pipeline("text-classification", model="bert-base-uncased")
18
+ }
19
+
20
+ # Image Detection Model (CLIP-based)
21
  clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
22
  clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
23
 
24
+ # HTML Template with both Fake News and Image Detection
25
  HTML_TEMPLATE = """
26
  <!DOCTYPE html>
27
  <html lang="en">
28
  <head>
29
  <meta charset="UTF-8">
30
+ <title>AI & News Detection</title>
31
  <style>
32
  body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
33
  .container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
34
+ textarea, select, input[type='file'] { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
35
+ button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; margin-top: 10px; }
36
  button:hover { background-color: #45a049; }
37
  .result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
38
  </style>
39
  </head>
40
  <body>
41
  <div class="container">
42
+ <h1>📰 Fake News Detection</h1>
43
+ <form method="POST" action="/detect">
44
+ <textarea name="text" placeholder="Enter news text..." required></textarea>
45
+ <label for="model">Select Fake News Model:</label>
46
+ <select name="model" required>
47
+ <option value="mrm8488">MRM8488 (BERT-Tiny)</option>
48
+ <option value="google-electra">Google Electra (Base Discriminator)</option>
49
+ <option value="bert-base">BERT-Base Uncased</option>
50
+ </select>
51
+ <button type="submit">Detect News Authenticity</button>
52
+ </form>
53
+
54
+ {% if news_prediction %}
55
+ <div class="result">
56
+ <h2>🧠 News Detection Result:</h2>
57
+ <p>{{ news_prediction }}</p>
58
+ </div>
59
+ {% endif %}
60
+
61
  <h1>🖼️ AI vs. Human Image Detection</h1>
62
  <form method="POST" action="/detect_image" enctype="multipart/form-data">
63
  <input type="file" name="image" required>
 
67
  {% if image_prediction %}
68
  <div class="result">
69
  <h2>📷 Image Detection Result:</h2>
70
+ <p>{{ image_prediction|safe }}</p>
71
+ <p><strong>Explanation:</strong> The model compares the uploaded image against the text prompts "AI-generated image" and "Human-created image" to determine similarity. Higher similarity to the AI prompt suggests an AI-generated image, and vice versa.</p>
72
  </div>
73
  {% endif %}
74
  </div>
 
80
  def home():
81
  return render_template_string(HTML_TEMPLATE)
82
 
83
+ @app.route("/detect", methods=["POST"])
84
+ def detect():
85
+ text = request.form.get("text")
86
+ model_key = request.form.get("model")
87
+
88
+ if not text or model_key not in news_models:
89
+ return render_template_string(HTML_TEMPLATE, news_prediction="Invalid input or model selection.")
90
+
91
+ result = news_models[model_key](text)[0]
92
+ label = "REAL" if result['label'].lower() in ["real", "label_1", "neutral"] else "FAKE"
93
+ confidence = result['score'] * 100
94
+
95
+ prediction_text = f"News is <strong>{label}</strong> (Confidence: {confidence:.2f}%)"
96
+ return render_template_string(HTML_TEMPLATE, news_prediction=prediction_text)
97
+
98
  @app.route("/detect_image", methods=["POST"])
99
  def detect_image():
100
  if "image" not in request.files:
 
103
  file = request.files["image"]
104
  img = Image.open(file).convert("RGB")
105
 
106
+ # Compare with AI and Human prompts
107
  prompts = ["AI-generated image", "Human-created image"]
 
 
108
  inputs = clip_processor(text=prompts, images=img, return_tensors="pt", padding=True)
109
 
110
  with torch.no_grad():
111
  outputs = clip_model(**inputs)
112
+ similarity = outputs.logits_per_image.softmax(dim=1).squeeze().tolist()
 
113
 
114
+ ai_similarity, human_similarity = similarity
115
+ prediction = "AI-Generated" if ai_similarity > human_similarity else "Human-Created"
116
 
117
+ prediction_text = (
118
+ f"Prediction: <strong>{prediction}</strong><br>"
119
+ f"AI Similarity: {ai_similarity * 100:.2f}% | Human Similarity: {human_similarity * 100:.2f}%"
120
  )
121
 
122
+ return render_template_string(HTML_TEMPLATE, image_prediction=prediction_text)
123
 
124
  if __name__ == "__main__":
125
+ app.run(host="0.0.0.0", port=7860)