Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
from flask import Flask, request, render_template_string
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
-
from transformers import CLIPProcessor, CLIPModel
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
@@ -10,28 +10,54 @@ app = Flask(__name__)
|
|
10 |
upload_folder = os.path.join('static', 'uploads')
|
11 |
os.makedirs(upload_folder, exist_ok=True)
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
15 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
|
17 |
-
# HTML Template with
|
18 |
HTML_TEMPLATE = """
|
19 |
<!DOCTYPE html>
|
20 |
<html lang="en">
|
21 |
<head>
|
22 |
<meta charset="UTF-8">
|
23 |
-
<title>AI
|
24 |
<style>
|
25 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
26 |
.container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
27 |
-
input[type=
|
28 |
-
button { background-color: #4CAF50; color: white; border: none; font-size: 16px;
|
29 |
button:hover { background-color: #45a049; }
|
30 |
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
|
31 |
</style>
|
32 |
</head>
|
33 |
<body>
|
34 |
<div class="container">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
<h1>🖼️ AI vs. Human Image Detection</h1>
|
36 |
<form method="POST" action="/detect_image" enctype="multipart/form-data">
|
37 |
<input type="file" name="image" required>
|
@@ -41,8 +67,8 @@ HTML_TEMPLATE = """
|
|
41 |
{% if image_prediction %}
|
42 |
<div class="result">
|
43 |
<h2>📷 Image Detection Result:</h2>
|
44 |
-
<p>{{ image_prediction }}</p>
|
45 |
-
<p><strong>Explanation:</strong> The model compares the image
|
46 |
</div>
|
47 |
{% endif %}
|
48 |
</div>
|
@@ -54,6 +80,21 @@ HTML_TEMPLATE = """
|
|
54 |
def home():
|
55 |
return render_template_string(HTML_TEMPLATE)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
@app.route("/detect_image", methods=["POST"])
|
58 |
def detect_image():
|
59 |
if "image" not in request.files:
|
@@ -62,26 +103,23 @@ def detect_image():
|
|
62 |
file = request.files["image"]
|
63 |
img = Image.open(file).convert("RGB")
|
64 |
|
65 |
-
#
|
66 |
prompts = ["AI-generated image", "Human-created image"]
|
67 |
-
|
68 |
-
# Process image and text inputs
|
69 |
inputs = clip_processor(text=prompts, images=img, return_tensors="pt", padding=True)
|
70 |
|
71 |
with torch.no_grad():
|
72 |
outputs = clip_model(**inputs)
|
73 |
-
|
74 |
-
probs = logits_per_image.softmax(dim=0)
|
75 |
|
76 |
-
|
77 |
-
prediction = "AI-Generated" if
|
78 |
|
79 |
-
|
80 |
-
f"Prediction: {prediction}
|
81 |
-
f"AI Similarity: {
|
82 |
)
|
83 |
|
84 |
-
return render_template_string(HTML_TEMPLATE, image_prediction=
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
2 |
from flask import Flask, request, render_template_string
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
+
from transformers import pipeline, CLIPProcessor, CLIPModel
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
|
|
10 |
upload_folder = os.path.join('static', 'uploads')
|
11 |
os.makedirs(upload_folder, exist_ok=True)
|
12 |
|
13 |
+
# Fake News Detection Models
|
14 |
+
news_models = {
|
15 |
+
"mrm8488": pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection"),
|
16 |
+
"google-electra": pipeline("text-classification", model="google/electra-base-discriminator"),
|
17 |
+
"bert-base": pipeline("text-classification", model="bert-base-uncased")
|
18 |
+
}
|
19 |
+
|
20 |
+
# Image Detection Model (CLIP-based)
|
21 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
22 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
|
24 |
+
# HTML Template with both Fake News and Image Detection
|
25 |
HTML_TEMPLATE = """
|
26 |
<!DOCTYPE html>
|
27 |
<html lang="en">
|
28 |
<head>
|
29 |
<meta charset="UTF-8">
|
30 |
+
<title>AI & News Detection</title>
|
31 |
<style>
|
32 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
33 |
.container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
34 |
+
textarea, select, input[type='file'] { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
|
35 |
+
button { background-color: #4CAF50; color: white; border: none; padding: 12px 20px; border-radius: 8px; cursor: pointer; font-size: 16px; margin-top: 10px; }
|
36 |
button:hover { background-color: #45a049; }
|
37 |
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
|
38 |
</style>
|
39 |
</head>
|
40 |
<body>
|
41 |
<div class="container">
|
42 |
+
<h1>📰 Fake News Detection</h1>
|
43 |
+
<form method="POST" action="/detect">
|
44 |
+
<textarea name="text" placeholder="Enter news text..." required></textarea>
|
45 |
+
<label for="model">Select Fake News Model:</label>
|
46 |
+
<select name="model" required>
|
47 |
+
<option value="mrm8488">MRM8488 (BERT-Tiny)</option>
|
48 |
+
<option value="google-electra">Google Electra (Base Discriminator)</option>
|
49 |
+
<option value="bert-base">BERT-Base Uncased</option>
|
50 |
+
</select>
|
51 |
+
<button type="submit">Detect News Authenticity</button>
|
52 |
+
</form>
|
53 |
+
|
54 |
+
{% if news_prediction %}
|
55 |
+
<div class="result">
|
56 |
+
<h2>🧠 News Detection Result:</h2>
|
57 |
+
<p>{{ news_prediction }}</p>
|
58 |
+
</div>
|
59 |
+
{% endif %}
|
60 |
+
|
61 |
<h1>🖼️ AI vs. Human Image Detection</h1>
|
62 |
<form method="POST" action="/detect_image" enctype="multipart/form-data">
|
63 |
<input type="file" name="image" required>
|
|
|
67 |
{% if image_prediction %}
|
68 |
<div class="result">
|
69 |
<h2>📷 Image Detection Result:</h2>
|
70 |
+
<p>{{ image_prediction|safe }}</p>
|
71 |
+
<p><strong>Explanation:</strong> The model compares the uploaded image against the text prompts "AI-generated image" and "Human-created image" to determine similarity. Higher similarity to the AI prompt suggests an AI-generated image, and vice versa.</p>
|
72 |
</div>
|
73 |
{% endif %}
|
74 |
</div>
|
|
|
80 |
def home():
|
81 |
return render_template_string(HTML_TEMPLATE)
|
82 |
|
83 |
+
@app.route("/detect", methods=["POST"])
|
84 |
+
def detect():
|
85 |
+
text = request.form.get("text")
|
86 |
+
model_key = request.form.get("model")
|
87 |
+
|
88 |
+
if not text or model_key not in news_models:
|
89 |
+
return render_template_string(HTML_TEMPLATE, news_prediction="Invalid input or model selection.")
|
90 |
+
|
91 |
+
result = news_models[model_key](text)[0]
|
92 |
+
label = "REAL" if result['label'].lower() in ["real", "label_1", "neutral"] else "FAKE"
|
93 |
+
confidence = result['score'] * 100
|
94 |
+
|
95 |
+
prediction_text = f"News is <strong>{label}</strong> (Confidence: {confidence:.2f}%)"
|
96 |
+
return render_template_string(HTML_TEMPLATE, news_prediction=prediction_text)
|
97 |
+
|
98 |
@app.route("/detect_image", methods=["POST"])
|
99 |
def detect_image():
|
100 |
if "image" not in request.files:
|
|
|
103 |
file = request.files["image"]
|
104 |
img = Image.open(file).convert("RGB")
|
105 |
|
106 |
+
# Compare with AI and Human prompts
|
107 |
prompts = ["AI-generated image", "Human-created image"]
|
|
|
|
|
108 |
inputs = clip_processor(text=prompts, images=img, return_tensors="pt", padding=True)
|
109 |
|
110 |
with torch.no_grad():
|
111 |
outputs = clip_model(**inputs)
|
112 |
+
similarity = outputs.logits_per_image.softmax(dim=1).squeeze().tolist()
|
|
|
113 |
|
114 |
+
ai_similarity, human_similarity = similarity
|
115 |
+
prediction = "AI-Generated" if ai_similarity > human_similarity else "Human-Created"
|
116 |
|
117 |
+
prediction_text = (
|
118 |
+
f"Prediction: <strong>{prediction}</strong><br>"
|
119 |
+
f"AI Similarity: {ai_similarity * 100:.2f}% | Human Similarity: {human_similarity * 100:.2f}%"
|
120 |
)
|
121 |
|
122 |
+
return render_template_string(HTML_TEMPLATE, image_prediction=prediction_text)
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
+
app.run(host="0.0.0.0", port=7860)
|