Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,7 @@ import os
|
|
2 |
from flask import Flask, request, render_template_string
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
-
from
|
6 |
-
from transformers import pipeline, CLIPProcessor, CLIPModel
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
@@ -11,61 +10,28 @@ app = Flask(__name__)
|
|
11 |
upload_folder = os.path.join('static', 'uploads')
|
12 |
os.makedirs(upload_folder, exist_ok=True)
|
13 |
|
14 |
-
#
|
15 |
-
news_models = {
|
16 |
-
"mrm8488": pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection"),
|
17 |
-
"google-electra": pipeline("text-classification", model="google/electra-base-discriminator"),
|
18 |
-
"bert-base": pipeline("text-classification", model="bert-base-uncased")
|
19 |
-
}
|
20 |
-
|
21 |
-
# Image Model for AI vs. Human Detection
|
22 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
24 |
|
25 |
-
#
|
26 |
-
transform = transforms.Compose([
|
27 |
-
transforms.Resize((224, 224)),
|
28 |
-
transforms.ToTensor(),
|
29 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
30 |
-
])
|
31 |
-
|
32 |
-
# HTML Template
|
33 |
HTML_TEMPLATE = """
|
34 |
<!DOCTYPE html>
|
35 |
<html lang="en">
|
36 |
<head>
|
37 |
<meta charset="UTF-8">
|
38 |
-
<title>AI
|
39 |
<style>
|
40 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
41 |
.container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
42 |
-
|
43 |
-
button { background-color: #4CAF50; color: white; border: none;
|
44 |
button:hover { background-color: #45a049; }
|
45 |
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
|
46 |
</style>
|
47 |
</head>
|
48 |
<body>
|
49 |
<div class="container">
|
50 |
-
<h1>📰 Fake News Detection</h1>
|
51 |
-
<form method="POST" action="/detect">
|
52 |
-
<textarea name="text" placeholder="Enter news text..." required></textarea>
|
53 |
-
<label for="model">Select Fake News Model:</label>
|
54 |
-
<select name="model" required>
|
55 |
-
<option value="mrm8488">MRM8488 (BERT-Tiny)</option>
|
56 |
-
<option value="google-electra">Google Electra (Base Discriminator)</option>
|
57 |
-
<option value="bert-base">BERT-Base Uncased</option>
|
58 |
-
</select>
|
59 |
-
<button type="submit">Detect News Authenticity</button>
|
60 |
-
</form>
|
61 |
-
|
62 |
-
{% if news_prediction %}
|
63 |
-
<div class="result">
|
64 |
-
<h2>🧠 News Detection Result:</h2>
|
65 |
-
<p>{{ news_prediction }}</p>
|
66 |
-
</div>
|
67 |
-
{% endif %}
|
68 |
-
|
69 |
<h1>🖼️ AI vs. Human Image Detection</h1>
|
70 |
<form method="POST" action="/detect_image" enctype="multipart/form-data">
|
71 |
<input type="file" name="image" required>
|
@@ -76,7 +42,7 @@ HTML_TEMPLATE = """
|
|
76 |
<div class="result">
|
77 |
<h2>📷 Image Detection Result:</h2>
|
78 |
<p>{{ image_prediction }}</p>
|
79 |
-
<p><strong>Explanation:</strong> The model
|
80 |
</div>
|
81 |
{% endif %}
|
82 |
</div>
|
@@ -88,23 +54,6 @@ HTML_TEMPLATE = """
|
|
88 |
def home():
|
89 |
return render_template_string(HTML_TEMPLATE)
|
90 |
|
91 |
-
@app.route("/detect", methods=["POST"])
|
92 |
-
def detect():
|
93 |
-
text = request.form.get("text")
|
94 |
-
model_key = request.form.get("model")
|
95 |
-
|
96 |
-
if not text or model_key not in news_models:
|
97 |
-
return render_template_string(HTML_TEMPLATE, news_prediction="Invalid input or model selection.")
|
98 |
-
|
99 |
-
result = news_models[model_key](text)[0]
|
100 |
-
label = "REAL" if result['label'].lower() in ["real", "label_1", "neutral"] else "FAKE"
|
101 |
-
confidence = result['score'] * 100
|
102 |
-
|
103 |
-
return render_template_string(
|
104 |
-
HTML_TEMPLATE,
|
105 |
-
news_prediction=f"News is {label} (Confidence: {confidence:.2f}%)"
|
106 |
-
)
|
107 |
-
|
108 |
@app.route("/detect_image", methods=["POST"])
|
109 |
def detect_image():
|
110 |
if "image" not in request.files:
|
@@ -112,22 +61,27 @@ def detect_image():
|
|
112 |
|
113 |
file = request.files["image"]
|
114 |
img = Image.open(file).convert("RGB")
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
with torch.no_grad():
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
"Higher variance indicates complex, diverse features typical of human-created images, while lower variance suggests smoother, AI-generated patterns."
|
125 |
-
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
)
|
131 |
|
|
|
|
|
132 |
if __name__ == "__main__":
|
133 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
2 |
from flask import Flask, request, render_template_string
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
+
from transformers import CLIPProcessor, CLIPModel
|
|
|
6 |
|
7 |
app = Flask(__name__)
|
8 |
|
|
|
10 |
upload_folder = os.path.join('static', 'uploads')
|
11 |
os.makedirs(upload_folder, exist_ok=True)
|
12 |
|
13 |
+
# Load CLIP model and processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
15 |
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
|
17 |
+
# HTML Template with Model Selection and Explanations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
HTML_TEMPLATE = """
|
19 |
<!DOCTYPE html>
|
20 |
<html lang="en">
|
21 |
<head>
|
22 |
<meta charset="UTF-8">
|
23 |
+
<title>AI vs. Human Image Detection</title>
|
24 |
<style>
|
25 |
body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; background-color: #f5f5f5; padding: 20px; }
|
26 |
.container { background: white; padding: 30px; border-radius: 12px; max-width: 850px; margin: auto; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); }
|
27 |
+
input[type="file"], button { width: 100%; padding: 12px; margin-top: 10px; border-radius: 8px; border: 1px solid #ccc; }
|
28 |
+
button { background-color: #4CAF50; color: white; border: none; font-size: 16px; cursor: pointer; }
|
29 |
button:hover { background-color: #45a049; }
|
30 |
.result { background: #e7f3fe; padding: 15px; border-radius: 10px; margin-top: 20px; }
|
31 |
</style>
|
32 |
</head>
|
33 |
<body>
|
34 |
<div class="container">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
<h1>🖼️ AI vs. Human Image Detection</h1>
|
36 |
<form method="POST" action="/detect_image" enctype="multipart/form-data">
|
37 |
<input type="file" name="image" required>
|
|
|
42 |
<div class="result">
|
43 |
<h2>📷 Image Detection Result:</h2>
|
44 |
<p>{{ image_prediction }}</p>
|
45 |
+
<p><strong>Explanation:</strong> The model compares the image to text prompts representing AI-generated and human-created images. The prediction is based on which prompt the image is more similar to.</p>
|
46 |
</div>
|
47 |
{% endif %}
|
48 |
</div>
|
|
|
54 |
def home():
|
55 |
return render_template_string(HTML_TEMPLATE)
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
@app.route("/detect_image", methods=["POST"])
|
58 |
def detect_image():
|
59 |
if "image" not in request.files:
|
|
|
61 |
|
62 |
file = request.files["image"]
|
63 |
img = Image.open(file).convert("RGB")
|
64 |
+
|
65 |
+
# Text prompts for comparison
|
66 |
+
prompts = ["AI-generated image", "Human-created image"]
|
67 |
+
|
68 |
+
# Process image and text inputs
|
69 |
+
inputs = clip_processor(text=prompts, images=img, return_tensors="pt", padding=True)
|
70 |
|
71 |
with torch.no_grad():
|
72 |
+
outputs = clip_model(**inputs)
|
73 |
+
logits_per_image = outputs.logits_per_image.squeeze()
|
74 |
+
probs = logits_per_image.softmax(dim=0)
|
75 |
|
76 |
+
ai_score, human_score = probs.tolist()
|
77 |
+
prediction = "AI-Generated" if ai_score > human_score else "Human-Created"
|
|
|
|
|
78 |
|
79 |
+
result_text = (
|
80 |
+
f"Prediction: {prediction} <br>"
|
81 |
+
f"AI Similarity: {ai_score * 100:.2f}% | Human Similarity: {human_score * 100:.2f}%"
|
82 |
)
|
83 |
|
84 |
+
return render_template_string(HTML_TEMPLATE, image_prediction=result_text)
|
85 |
+
|
86 |
if __name__ == "__main__":
|
87 |
+
app.run(host="0.0.0.0", port=7860) # Suitable for public launch
|